Current-Users archive

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Old Index]

Re: Call for testing: Attansic L1E



On Wed, 18 Mar 2009 18:05:02 +0100
"Christoph Egger" <Christoph_Egger%gmx.de@localhost> wrote:

> Izumi suggested improvements to the ale(4) driver some weeks ago
> on this list. Please give them a try.

I implemented (most of) Izumi's excellent suggestions without managing
to fix the problem.  It turned out that m_devget(9) behaves differently
under NetBSD and FreeBSD;  removing the ETHER_ALIGN fixed the problem.
I've attached my not-very-tested fix (only if_ale.c needed changes),
which has been working okay on my 100Mb network for the last couple of
hours (and a gigabyte+ of traffic) at least.

Thanks to both of you!

Kevin
kml%patheticgeek.net@localhost
/*-
 * Copyright (c) 2008, Pyun YongHyeon <yongari%FreeBSD.org@localhost>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
 */

/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */

#include "bpfilter.h"
#include "vlan.h"

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>

#include <sys/bus.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif

#include <net/if_types.h>
#include <net/if_vlanvar.h>

#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <sys/rnd.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_alereg.h>

static int      ale_match(device_t, cfdata_t, void *);
static void     ale_attach(device_t, device_t, void *);
static int      ale_detach(device_t, int);

static int      ale_miibus_readreg(device_t, int, int);
static void     ale_miibus_writereg(device_t, int, int, int);
static void     ale_miibus_statchg(device_t);

static int      ale_init(struct ifnet *);
static void     ale_start(struct ifnet *);
static int      ale_ioctl(struct ifnet *, u_long, void *);
static void     ale_watchdog(struct ifnet *);
static int      ale_mediachange(struct ifnet *);
static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);

static int      ale_intr(void *);
static int      ale_rxeof(struct ale_softc *sc);
static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
                    uint32_t, uint32_t *);
static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
static void     ale_txeof(struct ale_softc *);

static int      ale_dma_alloc(struct ale_softc *);
static void     ale_dma_free(struct ale_softc *);
static int      ale_encap(struct ale_softc *, struct mbuf **);
static void     ale_init_rx_pages(struct ale_softc *);
static void     ale_init_tx_ring(struct ale_softc *);

static void     ale_stop(struct ifnet *, int);
static void     ale_tick(void *);
static void     ale_get_macaddr(struct ale_softc *);
static void     ale_mac_config(struct ale_softc *);
static void     ale_phy_reset(struct ale_softc *);
static void     ale_reset(struct ale_softc *);
static void     ale_rxfilter(struct ale_softc *);
static void     ale_rxvlan(struct ale_softc *);
static void     ale_stats_clear(struct ale_softc *);
static void     ale_stats_update(struct ale_softc *);
static void     ale_stop_mac(struct ale_softc *);

CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
        ale_match, ale_attach, ale_detach, NULL);

int aledebug = 0;
#define DPRINTF(x)      do { if (aledebug) printf x; } while (0)

#define ETHER_ALIGN 2
#define ALE_CSUM_FEATURES       (M_CSUM_TCPv4 | M_CSUM_UDPv4)   

static int
ale_miibus_readreg(device_t dev, int phy, int reg)
{
        struct ale_softc *sc = device_private(dev);
        uint32_t v;
        int i;

        if (phy != sc->ale_phyaddr)
                return 0;

        CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
            MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
        for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
                DELAY(5);
                v = CSR_READ_4(sc, ALE_MDIO);
                if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
                        break;
        }

        if (i == 0) {
                printf("%s: phy read timeout: phy %d, reg %d\n",
                    device_xname(sc->sc_dev), phy, reg);
                return 0;
        }

        return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}

static void
ale_miibus_writereg(device_t dev, int phy, int reg, int val)
{
        struct ale_softc *sc = device_private(dev);
        uint32_t v;
        int i;

        if (phy != sc->ale_phyaddr)
                return;

        CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
            (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
            MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
        for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
                DELAY(5);
                v = CSR_READ_4(sc, ALE_MDIO);
                if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
                        break;
        }

        if (i == 0)
                printf("%s: phy write timeout: phy %d, reg %d\n",
                    device_xname(sc->sc_dev), phy, reg);
}

static void
ale_miibus_statchg(device_t dev)
{
        struct ale_softc *sc = device_private(dev);
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        struct mii_data *mii;
        uint32_t reg;

        if ((ifp->if_flags & IFF_RUNNING) == 0)
                return;

        mii = &sc->sc_miibus;

        sc->ale_flags &= ~ALE_FLAG_LINK;
        if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
            (IFM_ACTIVE | IFM_AVALID)) {
                switch (IFM_SUBTYPE(mii->mii_media_active)) {
                case IFM_10_T:
                case IFM_100_TX:
                        sc->ale_flags |= ALE_FLAG_LINK;
                        break;

                case IFM_1000_T:
                        if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
                                sc->ale_flags |= ALE_FLAG_LINK;
                        break;

                default:
                        break;
                }
        }

        /* Stop Rx/Tx MACs. */
        ale_stop_mac(sc);

        /* Program MACs with resolved speed/duplex/flow-control. */
        if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
                ale_mac_config(sc);
                /* Reenable Tx/Rx MACs. */
                reg = CSR_READ_4(sc, ALE_MAC_CFG);
                reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
                CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
        }
}

void
ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
        struct ale_softc *sc = ifp->if_softc;
        struct mii_data *mii = &sc->sc_miibus;

        mii_pollstat(mii);
        ifmr->ifm_status = mii->mii_media_status;
        ifmr->ifm_active = mii->mii_media_active;
}

int
ale_mediachange(struct ifnet *ifp)
{
        struct ale_softc *sc = ifp->if_softc;
        struct mii_data *mii = &sc->sc_miibus;
        int error;

        if (mii->mii_instance != 0) {
                struct mii_softc *miisc;

                LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
                        mii_phy_reset(miisc);
        }
        error = mii_mediachg(mii);

        return error;
}

int
ale_match(device_t dev, cfdata_t match, void *aux)
{
        struct pci_attach_args *pa = aux;

        return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
            PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
}

void
ale_get_macaddr(struct ale_softc *sc)
{
        uint32_t ea[2], reg;
        int i, vpdc;

        reg = CSR_READ_4(sc, ALE_SPI_CTRL);
        if ((reg & SPI_VPD_ENB) != 0) {
                reg &= ~SPI_VPD_ENB;
                CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
        }

        if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD, 
            &vpdc, NULL)) {
                /*
                 * PCI VPD capability found, let TWSI reload EEPROM.
                 * This will set ethernet address of controller.
                 */
                CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
                    TWSI_CTRL_SW_LD_START);
                for (i = 100; i > 0; i--) {
                        DELAY(1000);
                        reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
                        if ((reg & TWSI_CTRL_SW_LD_START) == 0)
                                break;
                }
                if (i == 0)
                        printf("%s: reloading EEPROM timeout!\n",
                            device_xname(sc->sc_dev));
        } else {
                if (aledebug)
                        printf("%s: PCI VPD capability not found!\n",
                            device_xname(sc->sc_dev));
        }

        ea[0] = CSR_READ_4(sc, ALE_PAR0);
        ea[1] = CSR_READ_4(sc, ALE_PAR1);
        sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
        sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
        sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
        sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
        sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
        sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
}

void
ale_phy_reset(struct ale_softc *sc)
{
        /* Reset magic from Linux. */
        CSR_WRITE_2(sc, ALE_GPHY_CTRL,
            GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
            GPHY_CTRL_PHY_PLL_ON);
        DELAY(1000);
        CSR_WRITE_2(sc, ALE_GPHY_CTRL,
            GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
            GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
        DELAY(1000);

#define ATPHY_DBG_ADDR          0x1D
#define ATPHY_DBG_DATA          0x1E

        /* Enable hibernation mode. */
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x0B);
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_DATA, 0xBC00);
        /* Set Class A/B for all modes. */
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x00);
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_DATA, 0x02EF);
        /* Enable 10BT power saving. */
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x12);
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_DATA, 0x4C04);
        /* Adjust 1000T power. */
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x04);
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x8BBB);
        /* 10BT center tap voltage. */
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x05);
        ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
            ATPHY_DBG_ADDR, 0x2C46);

#undef  ATPHY_DBG_ADDR
#undef  ATPHY_DBG_DATA
        DELAY(1000);
}

void
ale_attach(device_t parent, device_t self, void *aux)
{
        struct ale_softc *sc = device_private(self);
        struct pci_attach_args *pa = aux;
        pci_chipset_tag_t pc = pa->pa_pc;
        pci_intr_handle_t ih;
        const char *intrstr;
        struct ifnet *ifp;
        pcireg_t memtype;
        int error = 0;
        uint32_t rxf_len, txf_len;

        aprint_naive("\n");
        aprint_normal(": Attansic/Atheros L1E Ethernet\n");

        sc->sc_dev = self;
        sc->sc_dmat = pa->pa_dmat;
        sc->sc_pct = pa->pa_pc;
        sc->sc_pcitag = pa->pa_tag;

        /*
         * Allocate IO memory
         */
        memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
        switch (memtype) {
        case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
        case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
        case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
                break;
        default:
                aprint_error_dev(self, "invalid base address register\n");
                break;
        }

        if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
            &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
                aprint_error_dev(self, "could not map mem space\n");
                return;
        }

        if (pci_intr_map(pa, &ih) != 0) {
                aprint_error_dev(self, "could not map interrupt\n");
                goto fail;
        }

        /*
         * Allocate IRQ
         */
        intrstr = pci_intr_string(sc->sc_pct, ih);
        sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
        if (sc->sc_irq_handle == NULL) {
                aprint_error_dev(self, "could not establish interrupt");
                if (intrstr != NULL)
                        aprint_error(" at %s", intrstr);
                aprint_error("\n");
                goto fail;
        }
        aprint_normal_dev(self, "%s\n", intrstr);

        /* Set PHY address. */
        sc->ale_phyaddr = ALE_PHY_ADDR;

        /* Reset PHY. */
        ale_phy_reset(sc);

        /* Reset the ethernet controller. */
        ale_reset(sc);

        /* Get PCI and chip id/revision. */
        sc->ale_rev = PCI_REVISION(pa->pa_class);
        if (sc->ale_rev >= 0xF0) {
                /* L2E Rev. B. AR8114 */
                sc->ale_flags |= ALE_FLAG_FASTETHER;
        } else {
                if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
                        /* L1E AR8121 */
                        sc->ale_flags |= ALE_FLAG_JUMBO;
                } else {
                        /* L2E Rev. A. AR8113 */
                        sc->ale_flags |= ALE_FLAG_FASTETHER;
                }
        }

        /*
         * All known controllers seems to require 4 bytes alignment
         * of Tx buffers to make Tx checksum offload with custom
         * checksum generation method work.
         */
        sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;

        /*
         * All known controllers seems to have issues on Rx checksum
         * offload for fragmented IP datagrams.
         */
        sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;

        /*
         * Don't use Tx CMB. It is known to cause RRS update failure
         * under certain circumstances. Typical phenomenon of the
         * issue would be unexpected sequence number encountered in
         * Rx handler.
         */
        sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
        sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
            MASTER_CHIP_REV_SHIFT;
        aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
        aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);

        /*
         * Uninitialized hardware returns an invalid chip id/revision
         * as well as 0xFFFFFFFF for Tx/Rx fifo length.
         */
        txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
        rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
        if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
            rxf_len == 0xFFFFFFF) {
                aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
                    "%u Rx FIFO -- not initialized?\n",
                    sc->ale_chip_rev, txf_len, rxf_len);
                goto fail;
        }

        if (aledebug) {
                printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
                    txf_len, rxf_len);
        }

        /* Set max allowable DMA size. */
        sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
        sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;

        callout_init(&sc->sc_tick_ch, 0);
        callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);

        error = ale_dma_alloc(sc);
        if (error)
                goto fail;

        /* Load station address. */
        ale_get_macaddr(sc);

        aprint_normal_dev(self, "Ethernet address %s\n",
            ether_sprintf(sc->ale_eaddr));

        ifp = &sc->sc_ec.ec_if;
        ifp->if_softc = sc;
        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
        ifp->if_init = ale_init;
        ifp->if_ioctl = ale_ioctl;
        ifp->if_start = ale_start;
        ifp->if_stop = ale_stop;
        ifp->if_watchdog = ale_watchdog;
        IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
        IFQ_SET_READY(&ifp->if_snd);
        strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);

        sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;

#ifdef ALE_CHECKSUM
        ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
                                IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
                                IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
#endif

#if NVLAN > 0
        sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
#endif

        /* Set up MII bus. */
        sc->sc_miibus.mii_ifp = ifp;
        sc->sc_miibus.mii_readreg = ale_miibus_readreg;
        sc->sc_miibus.mii_writereg = ale_miibus_writereg;
        sc->sc_miibus.mii_statchg = ale_miibus_statchg;

        sc->sc_ec.ec_mii = &sc->sc_miibus;
        ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
            ale_mediastatus);
        mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
            MII_OFFSET_ANY, 0);

        if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
                aprint_error_dev(self, "no PHY found!\n");
                ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
                    0, NULL);
                ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
        } else
                ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);

        if_attach(ifp);
        ether_ifattach(ifp, sc->ale_eaddr);

        if (!pmf_device_register(self, NULL, NULL))
                aprint_error_dev(self, "couldn't establish power handler\n");
        else
                pmf_class_network_register(self, ifp);

        return;
fail:
        ale_dma_free(sc);
        if (sc->sc_irq_handle != NULL) {
                pci_intr_disestablish(pc, sc->sc_irq_handle);
                sc->sc_irq_handle = NULL;
        }
        if (sc->sc_mem_size) {
                bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
                sc->sc_mem_size = 0;
        }
}

static int
ale_detach(device_t self, int flags)
{
        struct ale_softc *sc = device_private(self);
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        int s;

        s = splnet();
        ale_stop(ifp, 0);
        splx(s);

        mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);

        /* Delete all remaining media. */
        ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);

        ether_ifdetach(ifp);
        if_detach(ifp);
        ale_dma_free(sc);

        if (sc->sc_irq_handle != NULL) {
                pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
                sc->sc_irq_handle = NULL;
        }
        bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);

        return 0;
}


static int
ale_dma_alloc(struct ale_softc *sc)
{
        struct ale_txdesc *txd;
        int nsegs, error, guard_size, i;

        if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
                guard_size = ALE_JUMBO_FRAMELEN;
        else
                guard_size = ALE_MAX_FRAMELEN;
        sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
            ALE_RX_PAGE_ALIGN);

        /*
         * Create DMA stuffs for TX ring
         */
        error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
            ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
        if (error) {
                sc->ale_cdata.ale_tx_ring_map = NULL;
                return ENOBUFS;
        }

        /* Allocate DMA'able memory for TX ring */ 
        error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ, 
            0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
            &nsegs, BUS_DMA_WAITOK);
        if (error) {
                printf("%s: could not allocate DMA'able memory for Tx ring, "
                    "error = %i\n", device_xname(sc->sc_dev), error);
                return error;
        }

        error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
            nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
            BUS_DMA_NOWAIT);
        if (error)
                return ENOBUFS;

        memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);

        /* Load the DMA map for Tx ring. */
        error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 
            sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
        if (error) {
                printf("%s: could not load DMA'able memory for Tx ring.\n",
                    device_xname(sc->sc_dev));
                bus_dmamem_free(sc->sc_dmat, 
                    &sc->ale_cdata.ale_tx_ring_seg, 1);
                return error;
        }
        sc->ale_cdata.ale_tx_ring_paddr = 
            sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;

        for (i = 0; i < ALE_RX_PAGES; i++) {
                /*
                 * Create DMA stuffs for RX pages
                 */
                error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
                    sc->ale_pagesize, 0, BUS_DMA_NOWAIT, 
                    &sc->ale_cdata.ale_rx_page[i].page_map);
                if (error) {
                        sc->ale_cdata.ale_rx_page[i].page_map = NULL;
                        return ENOBUFS;
                }

                /* Allocate DMA'able memory for RX pages */
                error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
                    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
                    1, &nsegs, BUS_DMA_WAITOK);
                if (error) {
                        printf("%s: could not allocate DMA'able memory for "
                            "Rx ring.\n", device_xname(sc->sc_dev));
                        return error;
                }
                error = bus_dmamem_map(sc->sc_dmat, 
                    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
                    sc->ale_pagesize, 
                    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
                    BUS_DMA_NOWAIT);
                if (error)
                        return ENOBUFS;

                memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0, 
sc->ale_pagesize);

                /* Load the DMA map for Rx pages. */
                error = bus_dmamap_load(sc->sc_dmat,
                    sc->ale_cdata.ale_rx_page[i].page_map,
                    sc->ale_cdata.ale_rx_page[i].page_addr,
                    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
                if (error) {
                        printf("%s: could not load DMA'able memory for "
                            "Rx pages.\n", device_xname(sc->sc_dev));
                        bus_dmamem_free(sc->sc_dmat,
                            &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
                        return error;
                }
                sc->ale_cdata.ale_rx_page[i].page_paddr =
                    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
        }

        /*
         * Create DMA stuffs for Tx CMB.
         */
        error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
            ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
        if (error) {
                sc->ale_cdata.ale_tx_cmb_map = NULL;
                return ENOBUFS;
        }

        /* Allocate DMA'able memory for Tx CMB. */
        error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
            &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);

        if (error) {
                printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
                    device_xname(sc->sc_dev));
                return error;
        }

        error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
            nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
            BUS_DMA_NOWAIT);
        if (error) 
                return ENOBUFS;

        memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);

        /* Load the DMA map for Tx CMB. */
        error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 
            sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
        if (error) {
                printf("%s: could not load DMA'able memory for Tx CMB.\n",
                    device_xname(sc->sc_dev));
                bus_dmamem_free(sc->sc_dmat,
                    &sc->ale_cdata.ale_tx_cmb_seg, 1);
                return error;
        }

        sc->ale_cdata.ale_tx_cmb_paddr = 
            sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;

        for (i = 0; i < ALE_RX_PAGES; i++) {
                /*
                 * Create DMA stuffs for Rx CMB.
                 */
                error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
                    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
                    &sc->ale_cdata.ale_rx_page[i].cmb_map);
                if (error) {
                        sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
                        return ENOBUFS;
                }

                /* Allocate DMA'able memory for Rx CMB */
                error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
                    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
                    &nsegs, BUS_DMA_WAITOK);
                if (error) {
                        printf("%s: could not allocate DMA'able memory for "
                            "Rx CMB\n", device_xname(sc->sc_dev));
                        return error;
                }
                error = bus_dmamem_map(sc->sc_dmat, 
                    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
                    ALE_RX_CMB_SZ, 
                    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
                    BUS_DMA_NOWAIT);
                if (error)
                        return ENOBUFS;

                memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);

                /* Load the DMA map for Rx CMB */
                error = bus_dmamap_load(sc->sc_dmat,
                    sc->ale_cdata.ale_rx_page[i].cmb_map,
                    sc->ale_cdata.ale_rx_page[i].cmb_addr,
                    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
                if (error) {
                        printf("%s: could not load DMA'able memory for Rx CMB"
                            "\n", device_xname(sc->sc_dev));
                        bus_dmamem_free(sc->sc_dmat,
                            &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
                        return error;
                }
                sc->ale_cdata.ale_rx_page[i].cmb_paddr =
                    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
        }


        /* Create DMA maps for Tx buffers. */
        for (i = 0; i < ALE_TX_RING_CNT; i++) {
                txd = &sc->ale_cdata.ale_txdesc[i];
                txd->tx_m = NULL;
                txd->tx_dmamap = NULL;
                error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
                    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
                    &txd->tx_dmamap);
                if (error) {
                        txd->tx_dmamap = NULL;
                        printf("%s: could not create Tx dmamap.\n",
                            device_xname(sc->sc_dev));
                        return error;
                }
        }

        return 0;
}

static void
ale_dma_free(struct ale_softc *sc)
{
        struct ale_txdesc *txd;
        int i;

        /* Tx buffers. */
        for (i = 0; i < ALE_TX_RING_CNT; i++) {
                txd = &sc->ale_cdata.ale_txdesc[i];
                if (txd->tx_dmamap != NULL) {
                        bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
                        txd->tx_dmamap = NULL;
                }
        }

        /* Tx descriptor ring. */
        if (sc->ale_cdata.ale_tx_ring_map != NULL)
                bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
        if (sc->ale_cdata.ale_tx_ring_map != NULL &&
            sc->ale_cdata.ale_tx_ring != NULL)
                bus_dmamem_free(sc->sc_dmat,
                    &sc->ale_cdata.ale_tx_ring_seg, 1);
        sc->ale_cdata.ale_tx_ring = NULL;
        sc->ale_cdata.ale_tx_ring_map = NULL;

        /* Rx page block. */
        for (i = 0; i < ALE_RX_PAGES; i++) {
                if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
                        bus_dmamap_unload(sc->sc_dmat,
                            sc->ale_cdata.ale_rx_page[i].page_map);
                if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
                    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
                        bus_dmamem_free(sc->sc_dmat,
                            &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
                sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
                sc->ale_cdata.ale_rx_page[i].page_map = NULL;
        }

        /* Rx CMB. */
        for (i = 0; i < ALE_RX_PAGES; i++) {
                if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
                        bus_dmamap_unload(sc->sc_dmat,
                            sc->ale_cdata.ale_rx_page[i].cmb_map);
                if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
                    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
                        bus_dmamem_free(sc->sc_dmat,
                            &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
                sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
                sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
        }

        /* Tx CMB. */
        if (sc->ale_cdata.ale_tx_cmb_map != NULL)
                bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
        if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
            sc->ale_cdata.ale_tx_cmb != NULL)
                bus_dmamem_free(sc->sc_dmat,
                    &sc->ale_cdata.ale_tx_cmb_seg, 1);
        sc->ale_cdata.ale_tx_cmb = NULL;
        sc->ale_cdata.ale_tx_cmb_map = NULL;

}

static int
ale_encap(struct ale_softc *sc, struct mbuf **m_head)
{
        struct ale_txdesc *txd, *txd_last;
        struct tx_desc *desc;
        struct mbuf *m;
        bus_dmamap_t map;
        uint32_t cflags, poff, vtag;
        int error, i, nsegs, prod;
#if NVLAN > 0
        struct m_tag *mtag;
#endif

        m = *m_head;
        cflags = vtag = 0;
        poff = 0;

        prod = sc->ale_cdata.ale_tx_prod;
        txd = &sc->ale_cdata.ale_txdesc[prod];
        txd_last = txd;
        map = txd->tx_dmamap;

        error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);

        if (error != 0) {
                bus_dmamap_unload(sc->sc_dmat, map);
                error = EFBIG;
        }
        if (error == EFBIG) {
                error = 0;

                MGETHDR(m, M_DONTWAIT, MT_DATA);
                if (m == NULL) {
                        printf("%s: can't defrag TX mbuf\n",
                            device_xname(sc->sc_dev));
                        m_freem(*m_head);
                        *m_head = NULL;
                        return ENOBUFS;
                }

                M_COPY_PKTHDR(m, *m_head);
                if ((*m_head)->m_pkthdr.len > MHLEN) {
                        MCLGET(m, M_DONTWAIT);
                        if (!(m->m_flags & M_EXT)) {
                                m_freem(*m_head);
                                m_freem(m);
                                *m_head = NULL;
                                return ENOBUFS;
                        }
                }
                m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
                    mtod(m, void *));
                m_freem(*m_head);
                m->m_len = m->m_pkthdr.len;
                *m_head = m;

                error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
                    BUS_DMA_NOWAIT);

                if (error != 0) {
                        printf("%s: could not load defragged TX mbuf\n",
                            device_xname(sc->sc_dev));
                        if (!error) {
                                bus_dmamap_unload(sc->sc_dmat, map);
                                error = EFBIG;
                        }
                        m_freem(*m_head);
                        *m_head = NULL;
                        return error;
                }
        } else if (error) {
                printf("%s: could not load TX mbuf\n", 
device_xname(sc->sc_dev));
                return error;
        }

        nsegs = map->dm_nsegs;

        if (nsegs == 0) {
                m_freem(*m_head);
                *m_head = NULL;
                return EIO;
        }

        /* Check descriptor overrun. */
        if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
                bus_dmamap_unload(sc->sc_dmat, map);
                return ENOBUFS;
        }
        bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
            BUS_DMASYNC_PREWRITE);

        m = *m_head;
        /* Configure Tx checksum offload. */
        if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
                /*
                 * AR81xx supports Tx custom checksum offload feature
                 * that offloads single 16bit checksum computation.
                 * So you can choose one among IP, TCP and UDP.
                 * Normally driver sets checksum start/insertion
                 * position from the information of TCP/UDP frame as
                 * TCP/UDP checksum takes more time than that of IP.
                 * However it seems that custom checksum offload
                 * requires 4 bytes aligned Tx buffers due to hardware
                 * bug.
                 * AR81xx also supports explicit Tx checksum computation
                 * if it is told that the size of IP header and TCP
                 * header(for UDP, the header size does not matter
                 * because it's fixed length). However with this scheme
                 * TSO does not work so you have to choose one either
                 * TSO or explicit Tx checksum offload. I chosen TSO
                 * plus custom checksum offload with work-around which
                 * will cover most common usage for this consumer
                 * ethernet controller. The work-around takes a lot of
                 * CPU cycles if Tx buffer is not aligned on 4 bytes
                 * boundary, though.
                 */
                cflags |= ALE_TD_CXSUM;
                /* Set checksum start offset. */
                cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
        }

#if NVLAN > 0
        /* Configure VLAN hardware tag insertion. */
        if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
                vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
                vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
                cflags |= ALE_TD_INSERT_VLAN_TAG;
        }
#endif

        desc = NULL;
        for (i = 0; i < nsegs; i++) {
                desc = &sc->ale_cdata.ale_tx_ring[prod];
                desc->addr = htole64(map->dm_segs[i].ds_addr);
                desc->len = 
                    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
                desc->flags = htole32(cflags);
                sc->ale_cdata.ale_tx_cnt++;
                ALE_DESC_INC(prod, ALE_TX_RING_CNT);
        }
        /* Update producer index. */
        sc->ale_cdata.ale_tx_prod = prod;

        /* Finally set EOP on the last descriptor. */
        prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
        desc = &sc->ale_cdata.ale_tx_ring[prod];
        desc->flags |= htole32(ALE_TD_EOP);

        /* Swap dmamap of the first and the last. */
        txd = &sc->ale_cdata.ale_txdesc[prod];
        map = txd_last->tx_dmamap;
        txd_last->tx_dmamap = txd->tx_dmamap;
        txd->tx_dmamap = map;
        txd->tx_m = m;

        /* Sync descriptors. */
        bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
            sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);

        return 0;
}

static void
ale_start(struct ifnet *ifp)
{
        struct ale_softc *sc = ifp->if_softc;
        struct mbuf *m_head;
        int enq;

        if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
                return;

        /* Reclaim transmitted frames. */
        if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
                ale_txeof(sc);

        enq = 0;
        for (;;) {
                IFQ_DEQUEUE(&ifp->if_snd, m_head);
                if (m_head == NULL)
                        break;

                /*
                 * Pack the data into the transmit ring. If we
                 * don't have room, set the OACTIVE flag and wait
                 * for the NIC to drain the ring.
                 */
                if (ale_encap(sc, &m_head)) {
                        if (m_head == NULL)
                                break;
                        ifp->if_flags |= IFF_OACTIVE;
                        break;
                }
                enq = 1;

#if NBPFILTER > 0
                /*
                 * If there's a BPF listener, bounce a copy of this frame
                 * to him.
                 */
                if (ifp->if_bpf != NULL)
                        bpf_mtap(ifp->if_bpf, m_head);
#endif
        }

        if (enq) {
                /* Kick. */
                CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
                    sc->ale_cdata.ale_tx_prod);

                /* Set a timeout in case the chip goes out to lunch. */
                ifp->if_timer = ALE_TX_TIMEOUT;
        }
}

static void
ale_watchdog(struct ifnet *ifp)
{
        struct ale_softc *sc = ifp->if_softc;

        if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
                printf("%s: watchdog timeout (missed link)\n",
                    device_xname(sc->sc_dev));
                ifp->if_oerrors++;
                ale_init(ifp);
                return;
        }

        printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
        ifp->if_oerrors++;
        ale_init(ifp);

        if (!IFQ_IS_EMPTY(&ifp->if_snd))
                ale_start(ifp);
}

static int
ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
        struct ale_softc *sc = ifp->if_softc;
        int s, error;

        s = splnet();

        error = ether_ioctl(ifp, cmd, data);
        if (error == ENETRESET) {
                if (ifp->if_flags & IFF_RUNNING)
                        ale_rxfilter(sc);
                error = 0;
        }

        splx(s);
        return error;
}

static void
ale_mac_config(struct ale_softc *sc)
{
        struct mii_data *mii;
        uint32_t reg;

        mii = &sc->sc_miibus;
        reg = CSR_READ_4(sc, ALE_MAC_CFG);
        reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
            MAC_CFG_SPEED_MASK);

        /* Reprogram MAC with resolved speed/duplex. */
        switch (IFM_SUBTYPE(mii->mii_media_active)) {
        case IFM_10_T:
        case IFM_100_TX:
                reg |= MAC_CFG_SPEED_10_100;
                break;
        case IFM_1000_T:
                reg |= MAC_CFG_SPEED_1000;
                break;
        }
        if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
                reg |= MAC_CFG_FULL_DUPLEX;
#ifdef notyet
                if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
                        reg |= MAC_CFG_TX_FC;
                if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
                        reg |= MAC_CFG_RX_FC;
#endif
        }
        CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}

static void
ale_stats_clear(struct ale_softc *sc)
{
        struct smb sb;
        uint32_t *reg;
        int i;

        for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
                CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
                i += sizeof(uint32_t);
        }
        /* Read Tx statistics. */
        for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
                CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
                i += sizeof(uint32_t);
        }
}

static void
ale_stats_update(struct ale_softc *sc)
{
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        struct ale_hw_stats *stat;
        struct smb sb, *smb;
        uint32_t *reg;
        int i;

        stat = &sc->ale_stats;
        smb = &sb;

        /* Read Rx statistics. */
        for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
                *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
                i += sizeof(uint32_t);
        }
        /* Read Tx statistics. */
        for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
                *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
                i += sizeof(uint32_t);
        }

        /* Rx stats. */
        stat->rx_frames += smb->rx_frames;
        stat->rx_bcast_frames += smb->rx_bcast_frames;
        stat->rx_mcast_frames += smb->rx_mcast_frames;
        stat->rx_pause_frames += smb->rx_pause_frames;
        stat->rx_control_frames += smb->rx_control_frames;
        stat->rx_crcerrs += smb->rx_crcerrs;
        stat->rx_lenerrs += smb->rx_lenerrs;
        stat->rx_bytes += smb->rx_bytes;
        stat->rx_runts += smb->rx_runts;
        stat->rx_fragments += smb->rx_fragments;
        stat->rx_pkts_64 += smb->rx_pkts_64;
        stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
        stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
        stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
        stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
        stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
        stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
        stat->rx_pkts_truncated += smb->rx_pkts_truncated;
        stat->rx_fifo_oflows += smb->rx_fifo_oflows;
        stat->rx_rrs_errs += smb->rx_rrs_errs;
        stat->rx_alignerrs += smb->rx_alignerrs;
        stat->rx_bcast_bytes += smb->rx_bcast_bytes;
        stat->rx_mcast_bytes += smb->rx_mcast_bytes;
        stat->rx_pkts_filtered += smb->rx_pkts_filtered;

        /* Tx stats. */
        stat->tx_frames += smb->tx_frames;
        stat->tx_bcast_frames += smb->tx_bcast_frames;
        stat->tx_mcast_frames += smb->tx_mcast_frames;
        stat->tx_pause_frames += smb->tx_pause_frames;
        stat->tx_excess_defer += smb->tx_excess_defer;
        stat->tx_control_frames += smb->tx_control_frames;
        stat->tx_deferred += smb->tx_deferred;
        stat->tx_bytes += smb->tx_bytes;
        stat->tx_pkts_64 += smb->tx_pkts_64;
        stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
        stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
        stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
        stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
        stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
        stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
        stat->tx_single_colls += smb->tx_single_colls;
        stat->tx_multi_colls += smb->tx_multi_colls;
        stat->tx_late_colls += smb->tx_late_colls;
        stat->tx_excess_colls += smb->tx_excess_colls;
        stat->tx_abort += smb->tx_abort;
        stat->tx_underrun += smb->tx_underrun;
        stat->tx_desc_underrun += smb->tx_desc_underrun;
        stat->tx_lenerrs += smb->tx_lenerrs;
        stat->tx_pkts_truncated += smb->tx_pkts_truncated;
        stat->tx_bcast_bytes += smb->tx_bcast_bytes;
        stat->tx_mcast_bytes += smb->tx_mcast_bytes;

        /* Update counters in ifnet. */
        ifp->if_opackets += smb->tx_frames;

        ifp->if_collisions += smb->tx_single_colls +
            smb->tx_multi_colls * 2 + smb->tx_late_colls +
            smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;

        /*
         * XXX
         * tx_pkts_truncated counter looks suspicious. It constantly
         * increments with no sign of Tx errors. This may indicate
         * the counter name is not correct one so I've removed the
         * counter in output errors.
         */
        ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
            smb->tx_underrun;

        ifp->if_ipackets += smb->rx_frames;

        ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
            smb->rx_runts + smb->rx_pkts_truncated +
            smb->rx_fifo_oflows + smb->rx_rrs_errs +
            smb->rx_alignerrs;
}

static int
ale_intr(void *xsc)
{
        struct ale_softc *sc = xsc;
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        uint32_t status;

        status = CSR_READ_4(sc, ALE_INTR_STATUS);
        if ((status & ALE_INTRS) == 0)
                return 0;

        /* Acknowledge and disable interrupts. */
        CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);

        if (ifp->if_flags & IFF_RUNNING) {
                int error;

                error = ale_rxeof(sc);
                if (error) {
                        sc->ale_stats.reset_brk_seq++;
                        ale_init(ifp);
                        return 0;
                }

                if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
                        if (status & INTR_DMA_RD_TO_RST)
                                printf("%s: DMA read error! -- resetting\n",
                                    device_xname(sc->sc_dev));
                        if (status & INTR_DMA_WR_TO_RST)
                                printf("%s: DMA write error! -- resetting\n",
                                    device_xname(sc->sc_dev));
                        ale_init(ifp);
                        return 0;
                }

                ale_txeof(sc);
                if (!IFQ_IS_EMPTY(&ifp->if_snd))
                        ale_start(ifp);
        }

        /* Re-enable interrupts. */
        CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
        return 1;
}

static void
ale_txeof(struct ale_softc *sc)
{
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        struct ale_txdesc *txd;
        uint32_t cons, prod;
        int prog;

        if (sc->ale_cdata.ale_tx_cnt == 0)
                return;

        bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
            sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
        if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
                bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
                    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, 
                    BUS_DMASYNC_POSTREAD);
                prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
        } else
                prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
        cons = sc->ale_cdata.ale_tx_cons;
        /*
         * Go through our Tx list and free mbufs for those
         * frames which have been transmitted.
         */
        for (prog = 0; cons != prod; prog++,
             ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
                if (sc->ale_cdata.ale_tx_cnt <= 0)
                        break;
                prog++;
                ifp->if_flags &= ~IFF_OACTIVE;
                sc->ale_cdata.ale_tx_cnt--;
                txd = &sc->ale_cdata.ale_txdesc[cons];
                if (txd->tx_m != NULL) {
                        /* Reclaim transmitted mbufs. */
                        bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
                        m_freem(txd->tx_m);
                        txd->tx_m = NULL;
                }
        }

        if (prog > 0) {
                sc->ale_cdata.ale_tx_cons = cons;
                /*
                 * Unarm watchdog timer only when there is no pending
                 * Tx descriptors in queue.
                 */
                if (sc->ale_cdata.ale_tx_cnt == 0)
                        ifp->if_timer = 0;
        }
}

static void
ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
    uint32_t length, uint32_t *prod)
{
        struct ale_rx_page *rx_page;

        rx_page = *page;
        /* Update consumer position. */
        rx_page->cons += roundup(length + sizeof(struct rx_rs),
            ALE_RX_PAGE_ALIGN);
        if (rx_page->cons >= ALE_RX_PAGE_SZ) {
                /*
                 * End of Rx page reached, let hardware reuse
                 * this page.
                 */
                rx_page->cons = 0;
                *rx_page->cmb_addr = 0;
                bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
                    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
                CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
                    RXF_VALID);
                /* Switch to alternate Rx page. */
                sc->ale_cdata.ale_rx_curp ^= 1;
                rx_page = *page =
                    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
                /* Page flipped, sync CMB and Rx page. */
                bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
                    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
                bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
                    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
                /* Sync completed, cache updated producer index. */
                *prod = *rx_page->cmb_addr;
        }
}


/*
 * It seems that AR81xx controller can compute partial checksum.
 * The partial checksum value can be used to accelerate checksum
 * computation for fragmented TCP/UDP packets. Upper network stack
 * already takes advantage of the partial checksum value in IP
 * reassembly stage. But I'm not sure the correctness of the
 * partial hardware checksum assistance due to lack of data sheet.
 * In addition, the Rx feature of controller that requires copying
 * for every frames effectively nullifies one of most nice offload
 * capability of controller.
 */
static void
ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
{
        if (status & ALE_RD_IPCSUM_NOK)
                m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;

        if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
                if (((status & ALE_RD_IPV4_FRAG) == 0) &&
                    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
                    (status & ALE_RD_TCP_UDPCSUM_NOK))
                {
                        m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
                }
        } else {
                if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
                        if (status & ALE_RD_TCP_UDPCSUM_NOK) {
                                m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
                        }
                }
        }
        /*
         * Don't mark bad checksum for TCP/UDP frames
         * as fragmented frames may always have set
         * bad checksummed bit of frame status.
         */
}

/* Process received frames. */
static int
ale_rxeof(struct ale_softc *sc)
{
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        struct ale_rx_page *rx_page;
        struct rx_rs *rs;
        struct mbuf *m;
        uint32_t length, prod, seqno, status;
        int prog;

        rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
        bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
            rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
        bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
            rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
        /*
         * Don't directly access producer index as hardware may
         * update it while Rx handler is in progress. It would
         * be even better if there is a way to let hardware
         * know how far driver processed its received frames.
         * Alternatively, hardware could provide a way to disable
         * CMB updates until driver acknowledges the end of CMB
         * access.
         */
        prod = *rx_page->cmb_addr;
        for (prog = 0; ; prog++) {
                if (rx_page->cons >= prod)
                        break;
                rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
                seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
                if (sc->ale_cdata.ale_rx_seqno != seqno) {
                        /*
                         * Normally I believe this should not happen unless
                         * severe driver bug or corrupted memory. However
                         * it seems to happen under certain conditions which
                         * is triggered by abrupt Rx events such as initiation
                         * of bulk transfer of remote host. It's not easy to
                         * reproduce this and I doubt it could be related
                         * with FIFO overflow of hardware or activity of Tx
                         * CMB updates. I also remember similar behaviour
                         * seen on RealTek 8139 which uses resembling Rx
                         * scheme.
                         */
                        if (aledebug)
                                printf("%s: garbled seq: %u, expected: %u -- "
                                    "resetting!\n", device_xname(sc->sc_dev),
                                    seqno, sc->ale_cdata.ale_rx_seqno);
                        return EIO;
                }
                /* Frame received. */
                sc->ale_cdata.ale_rx_seqno++;
                length = ALE_RX_BYTES(le32toh(rs->length));
                status = le32toh(rs->flags);
                if (status & ALE_RD_ERROR) {
                        /*
                         * We want to pass the following frames to upper
                         * layer regardless of error status of Rx return
                         * status.
                         *
                         *  o IP/TCP/UDP checksum is bad.
                         *  o frame length and protocol specific length
                         *     does not match.
                         */
                        if (status & (ALE_RD_CRC | ALE_RD_CODE |
                            ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
                            ALE_RD_TRUNC)) {
                                ale_rx_update_page(sc, &rx_page, length, &prod);
                                continue;
                        }
                }
                /*
                 * m_devget(9) is major bottle-neck of ale(4)(It comes
                 * from hardware limitation). For jumbo frames we could
                 * get a slightly better performance if driver use
                 * m_getjcl(9) with proper buffer size argument. However
                 * that would make code more complicated and I don't
                 * think users would expect good Rx performance numbers
                 * on these low-end consumer ethernet controller.
                 */
                m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
                    0, ifp, NULL);
                if (m == NULL) {
                        ifp->if_iqdrops++;
                        ale_rx_update_page(sc, &rx_page, length, &prod);
                        continue;
                }
                if (status & ALE_RD_IPV4)
                        ale_rxcsum(sc, m, status);
#if NVLAN > 0
                if (status & ALE_RD_VLAN) {
                        uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
                        VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
                }
#endif


#if NBPFILTER > 0
                if (ifp->if_bpf)
                        bpf_mtap(ifp->if_bpf, m);
#endif

                /* Pass it to upper layer. */
                ether_input(ifp, m);

                ale_rx_update_page(sc, &rx_page, length, &prod);
        }

        return 0;
}

static void
ale_tick(void *xsc)
{
        struct ale_softc *sc = xsc;
        struct mii_data *mii = &sc->sc_miibus;
        int s;

        s = splnet();
        mii_tick(mii);
        ale_stats_update(sc);
        splx(s);

        callout_schedule(&sc->sc_tick_ch, hz);
}

static void
ale_reset(struct ale_softc *sc)
{
        uint32_t reg;
        int i;

        /* Initialize PCIe module. From Linux. */
        CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);

        CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
        for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
                DELAY(10);
                if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
                        break;
        }
        if (i == 0)
                printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));

        for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
                if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
                        break;
                DELAY(10);
        }

        if (i == 0)
                printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
                    reg);
}

static int
ale_init(struct ifnet *ifp)
{
        struct ale_softc *sc = ifp->if_softc;
        struct mii_data *mii;
        uint8_t eaddr[ETHER_ADDR_LEN];
        bus_addr_t paddr;
        uint32_t reg, rxf_hi, rxf_lo;

        /*
         * Cancel any pending I/O.
         */
        ale_stop(ifp, 0);

        /*
         * Reset the chip to a known state.
         */
        ale_reset(sc);

        /* Initialize Tx descriptors, DMA memory blocks. */
        ale_init_rx_pages(sc);
        ale_init_tx_ring(sc);

        /* Reprogram the station address. */
        memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
        CSR_WRITE_4(sc, ALE_PAR0,
            eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
        CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);

        /*
         * Clear WOL status and disable all WOL feature as WOL
         * would interfere Rx operation under normal environments.
         */
        CSR_READ_4(sc, ALE_WOL_CFG);
        CSR_WRITE_4(sc, ALE_WOL_CFG, 0);

        /*
         * Set Tx descriptor/RXF0/CMB base addresses. They share
         * the same high address part of DMAable region.
         */
        paddr = sc->ale_cdata.ale_tx_ring_paddr;
        CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
        CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
        CSR_WRITE_4(sc, ALE_TPD_CNT,
            (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);

        /* Set Rx page base address, note we use single queue. */
        paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
        CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
        paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
        CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));

        /* Set Tx/Rx CMB addresses. */
        paddr = sc->ale_cdata.ale_tx_cmb_paddr;
        CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
        paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
        CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
        paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
        CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));

        /* Mark RXF0 is valid. */
        CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
        CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
        /*
         * No need to initialize RFX1/RXF2/RXF3. We don't use
         * multi-queue yet.
         */

        /* Set Rx page size, excluding guard frame size. */
        CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);

        /* Tell hardware that we're ready to load DMA blocks. */
        CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);

        /* Set Rx/Tx interrupt trigger threshold. */
        CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
            (4 << INT_TRIG_TX_THRESH_SHIFT));
        /*
         * XXX
         * Set interrupt trigger timer, its purpose and relation
         * with interrupt moderation mechanism is not clear yet.
         */
        CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
            ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
            (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));

        /* Configure interrupt moderation timer. */
        sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
        sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
        reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
        reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
        CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
        reg = CSR_READ_4(sc, ALE_MASTER_CFG);
        reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
        reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
        if (ALE_USECS(sc->ale_int_rx_mod) != 0)
                reg |= MASTER_IM_RX_TIMER_ENB;
        if (ALE_USECS(sc->ale_int_tx_mod) != 0)
                reg |= MASTER_IM_TX_TIMER_ENB;
        CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
        CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));

        /* Set Maximum frame size of controller. */
        if (ifp->if_mtu < ETHERMTU)
                sc->ale_max_frame_size = ETHERMTU;
        else
                sc->ale_max_frame_size = ifp->if_mtu;
        sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 
ETHER_CRC_LEN;
        CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);

        /* Configure IPG/IFG parameters. */
        CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
            ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
            ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
            ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
            ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));

        /* Set parameters for half-duplex media. */
        CSR_WRITE_4(sc, ALE_HDPX_CFG,
            ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
            HDPX_CFG_LCOL_MASK) |
            ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
            HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
            ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
            HDPX_CFG_ABEBT_MASK) |
            ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
            HDPX_CFG_JAMIPG_MASK));

        /* Configure Tx jumbo frame parameters. */
        if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
                if (ifp->if_mtu < ETHERMTU)
                        reg = sc->ale_max_frame_size;
                else if (ifp->if_mtu < 6 * 1024)
                        reg = (sc->ale_max_frame_size * 2) / 3;
                else
                        reg = sc->ale_max_frame_size / 2;
                CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
                    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
                    TX_JUMBO_THRESH_UNIT_SHIFT);
        }

        /* Configure TxQ. */
        reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
            << TXQ_CFG_TX_FIFO_BURST_SHIFT;
        reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
            TXQ_CFG_TPD_BURST_MASK;
        CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);

        /* Configure Rx jumbo frame & flow control parameters. */
        if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
                reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
                CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
                    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
                    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
                    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
                    RX_JUMBO_LKAH_MASK));
                reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
                rxf_hi = (reg * 7) / 10;
                rxf_lo = (reg * 3)/ 10;
                CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
                    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
                    RX_FIFO_PAUSE_THRESH_LO_MASK) |
                    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
                     RX_FIFO_PAUSE_THRESH_HI_MASK));
        }

        /* Disable RSS. */
        CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
        CSR_WRITE_4(sc, ALE_RSS_CPU, 0);

        /* Configure RxQ. */
        CSR_WRITE_4(sc, ALE_RXQ_CFG,
            RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);

        /* Configure DMA parameters. */
        reg = 0;
        if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
                reg |= DMA_CFG_TXCMB_ENB;
        CSR_WRITE_4(sc, ALE_DMA_CFG,
            DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
            sc->ale_dma_rd_burst | reg |
            sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
            ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
            DMA_CFG_RD_DELAY_CNT_MASK) |
            ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
            DMA_CFG_WR_DELAY_CNT_MASK));

        /*
         * Hardware can be configured to issue SMB interrupt based
         * on programmed interval. Since there is a callout that is
         * invoked for every hz in driver we use that instead of
         * relying on periodic SMB interrupt.
         */
        CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));

        /* Clear MAC statistics. */
        ale_stats_clear(sc);

        /*
         * Configure Tx/Rx MACs.
         *  - Auto-padding for short frames.
         *  - Enable CRC generation.
         *  Actual reconfiguration of MAC for resolved speed/duplex
         *  is followed after detection of link establishment.
         *  AR81xx always does checksum computation regardless of
         *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
         *  cause Rx handling issue for fragmented IP datagrams due
         *  to silicon bug.
         */
        reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
            ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
            MAC_CFG_PREAMBLE_MASK);
        if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
                reg |= MAC_CFG_SPEED_10_100;
        else
                reg |= MAC_CFG_SPEED_1000;
        CSR_WRITE_4(sc, ALE_MAC_CFG, reg);

        /* Set up the receive filter. */
        ale_rxfilter(sc);
        ale_rxvlan(sc);

        /* Acknowledge all pending interrupts and clear it. */
        CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
        CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
        CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);

        sc->ale_flags &= ~ALE_FLAG_LINK;

        /* Switch to the current media. */
        mii = &sc->sc_miibus;
        mii_mediachg(mii);

        callout_schedule(&sc->sc_tick_ch, hz);

        ifp->if_flags |= IFF_RUNNING;
        ifp->if_flags &= ~IFF_OACTIVE;

        return 0;
}

static void
ale_stop(struct ifnet *ifp, int disable)
{
        struct ale_softc *sc = ifp->if_softc;
        struct ale_txdesc *txd;
        uint32_t reg;
        int i;

        callout_stop(&sc->sc_tick_ch);

        /*
         * Mark the interface down and cancel the watchdog timer.
         */
        ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
        ifp->if_timer = 0;

        sc->ale_flags &= ~ALE_FLAG_LINK;

        ale_stats_update(sc);

        mii_down(&sc->sc_miibus);

        /* Disable interrupts. */
        CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
        CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);

        /* Disable queue processing and DMA. */
        reg = CSR_READ_4(sc, ALE_TXQ_CFG);
        reg &= ~TXQ_CFG_ENB;
        CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
        reg = CSR_READ_4(sc, ALE_RXQ_CFG);
        reg &= ~RXQ_CFG_ENB;
        CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
        reg = CSR_READ_4(sc, ALE_DMA_CFG);
        reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
        CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
        DELAY(1000);

        /* Stop Rx/Tx MACs. */
        ale_stop_mac(sc);

        /* Disable interrupts again? XXX */
        CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);

        /*
         * Free TX mbufs still in the queues.
         */
        for (i = 0; i < ALE_TX_RING_CNT; i++) {
                txd = &sc->ale_cdata.ale_txdesc[i];
                if (txd->tx_m != NULL) {
                        bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
                        m_freem(txd->tx_m);
                        txd->tx_m = NULL;
                }
        }
}

static void
ale_stop_mac(struct ale_softc *sc)
{
        uint32_t reg;
        int i;

        reg = CSR_READ_4(sc, ALE_MAC_CFG);
        if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
                reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
                CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
        }

        for (i = ALE_TIMEOUT; i > 0; i--) {
                reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
                if (reg == 0)
                        break;
                DELAY(10);
        }
        if (i == 0)
                printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
                    device_xname(sc->sc_dev), reg);
}

static void
ale_init_tx_ring(struct ale_softc *sc)
{
        struct ale_txdesc *txd;
        int i;

        sc->ale_cdata.ale_tx_prod = 0;
        sc->ale_cdata.ale_tx_cons = 0;
        sc->ale_cdata.ale_tx_cnt = 0;

        memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
        memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
        for (i = 0; i < ALE_TX_RING_CNT; i++) {
                txd = &sc->ale_cdata.ale_txdesc[i];
                txd->tx_m = NULL;
        }
        *sc->ale_cdata.ale_tx_cmb = 0;
        bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
            sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
        bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
            sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}

static void
ale_init_rx_pages(struct ale_softc *sc)
{
        struct ale_rx_page *rx_page;
        int i;

        sc->ale_cdata.ale_rx_seqno = 0;
        sc->ale_cdata.ale_rx_curp = 0;

        for (i = 0; i < ALE_RX_PAGES; i++) {
                rx_page = &sc->ale_cdata.ale_rx_page[i];
                memset(rx_page->page_addr, 0, sc->ale_pagesize);
                memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
                rx_page->cons = 0;
                *rx_page->cmb_addr = 0;
                bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
                    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
                bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
                    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
        }
}

static void
ale_rxvlan(struct ale_softc *sc)
{
        struct ifnet *ifp = &sc->sc_ec.ec_if;
        uint32_t reg;

        reg = CSR_READ_4(sc, ALE_MAC_CFG);
        reg &= ~MAC_CFG_VLAN_TAG_STRIP;
        if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
                reg |= MAC_CFG_VLAN_TAG_STRIP;
        CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}

static void
ale_rxfilter(struct ale_softc *sc)
{
        struct ethercom *ec = &sc->sc_ec;
        struct ifnet *ifp = &ec->ec_if;
        struct ether_multi *enm;
        struct ether_multistep step;
        uint32_t crc;
        uint32_t mchash[2];
        uint32_t rxcfg;

        rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
        rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);

        /*
         * Always accept broadcast frames.
         */
        rxcfg |= MAC_CFG_BCAST;

        if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC || 
            ec->ec_multicnt > 0) {
allmulti:
                if (ifp->if_flags & IFF_PROMISC)
                        rxcfg |= MAC_CFG_PROMISC;
                else
                        rxcfg |= MAC_CFG_ALLMULTI;
                mchash[0] = mchash[1] = 0xFFFFFFFF;
        } else {
                /* Program new filter. */
                memset(mchash, 0, sizeof(mchash));

                ETHER_FIRST_MULTI(step, ec, enm);
                while (enm != NULL) {
                        if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
                            ETHER_ADDR_LEN)) {
                                ifp->if_flags |= IFF_ALLMULTI;
                                goto allmulti;
                        }
                        crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);

                        mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
                        ETHER_NEXT_MULTI(step, enm);
                }
        }

        CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
        CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
        CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
}


Home | Main Index | Thread Index | Old Index