
pax Utilities

NAME
pax — portable archive interchange

SYNOPSIS
pax [-dv] [-c|-n] [-H|-L] [-o options] [-f archive] [-s replstr]...

[pattern...]

pax -r[-c|-n] [-dikuv] [-H|-L] [-f archive] [-o options]... [-p string]...
[-s replstr]... [pattern...]

pax -w [-dituvX] [-H|-L] [-b blocksize] [[-a] [-f archive]] [-o options]...
[-s replstr]... [-x format] [file...]

pax -r -w [-dikltuvX] [-H|-L] [-o options]... [-p string]... |
[-s replstr]... [file...] directory

DESCRIPTION
The pax utility shall read, write, and write lists of the members of archive files and copy
directory hierarchies. A variety of archive formats shall be supported; see the −x format option.

The action to be taken depends on the presence of the −r and −w options. The four combinations
of −r and −w are referred to as the four modes of operation: list, read, write, and copy modes,
corresponding respectively to the four forms shown in the SYNOPSIS section.

list In list mode (when neither −r nor −w are specified), pax shall write the names of
the members of the archive file read from the standard input, with pathnames
matching the specified patterns, to standard output. If a named file is of type
directory, the file hierarchy rooted at that file shall be listed as well.

read In read mode (when −r is specified, but −w is not), pax shall extract the members of
the archive file read from the standard input, with pathnames matching the
specified patterns. If an extracted file is of type directory, the file hierarchy rooted
at that file shall be extracted as well. The extracted files shall be created performing
pathname resolution with the directory in which pax was invoked as the current
working directory.

If an attempt is made to extract a directory when the directory already exists, this
shall not be considered an error. If an attempt is made to extract a FIFO when the
FIFO already exists, this shall not be considered an error.

The ownership, access, and modification times, and file mode of the restored files
are discussed under the −p option.

write In write mode (when −w is specified, but −r is not), pax shall write the contents of
the file operands to the standard output in an archive format. If no file operands are
specified, a list of files to copy, one per line, shall be read from the standard input
and each entry in this list shall be processed as if it had been a file operand on the
command line. A file of type directory shall include all of the files in the file
hierarchy rooted at the file.

copy In copy mode (when both −r and −w are specified), pax shall copy the file operands
to the destination directory.

If no file operands are specified, a list of files to copy, one per line, shall be read
from the standard input. A file of type directory shall include all of the files in the
file hierarchy rooted at the file.

The effect of the copy shall be as if the copied files were written to a pax format
archive file and then subsequently extracted, except that copying of sockets may be

3222 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109042

109043

109044

109045

109046

109047

109048

109049

109050

109051

109052

109053

109054

109055

109056

109057

109058

109059

109060

109061

109062

109063

109064

109065

109066

109067

109068

109069

109070

109071

109072

109073

109074

109075

109076

109077

109078

109079

109080

109081

109082

109083

109084

109085

109086

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

supported even if archiving them in write mode is not supported, and that there
may be hard links between the original and the copied files. If the destination
directory is a subdirectory of one of the files to be copied, the results are
unspecified. If the destination directory is a file of a type not defined by the System
Interfaces volume of POSIX.1-202x, the results are implementation-defined;
otherwise, it shall be an error for the file named by the directory operand not to
exist, not be writable by the user, or not be a file of type directory.

In read or copy modes, if intermediate directories are necessary to extract an archive member,
pax shall perform actions equivalent to the mkdir() function defined in the System Interfaces
volume of POSIX.1-202x, called with the following arguments:

• The intermediate directory used as the path argument

• The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the mode
argument

If any specified pattern or file operands are not matched by at least one file or archive member,
pax shall write a diagnostic message to standard error for each one that did not match and exit
with a non-zero exit status.

The archive formats described in the EXTENDED DESCRIPTION section shall be automatically
detected on input. The default output archive format shall be implementation-defined.

A single archive can span multiple files. The pax utility shall determine, in an implementation-
defined manner, what file to read or write as the next file.

If the selected archive format supports the specification of linked files, it shall be an error if these
files cannot be linked when the archive is extracted. For archive formats that do not store file
contents with each name that causes a hard link, if the file that contains the data is not extracted
during this pax session, either the data shall be restored from the original file, or a diagnostic
message shall be displayed with the name of a file that can be used to extract the data. In
traversing directories, pax shall detect infinite loops; that is, entering a previously visited
directory that is an ancestor of the last file visited. When it detects an infinite loop, pax shall
write a diagnostic message to standard error and shall terminate.

OPTIONS
The pax utility shall conform to XBD Section 12.2 (on page 215), except that the order of
presentation of the −o, −p, and −s options is significant.

The following options shall be supported:

−r Read an archive file from standard input.

−w Write files to the standard output in the specified archive format.

−a Append files to the end of the archive. It is implementation-defined which devices
on the system support appending. Additional file formats unspecified by this
volume of POSIX.1-202x may impose restrictions on appending.

−b blocksize Block the output at a positive decimal integer number of bytes per write to the
archive file. Devices and archive formats may impose restrictions on blocking.
Blocking shall be automatically determined on input. Conforming applications
shall not specify a blocksize value larger than 32 256. Default blocking when
creating archives depends on the archive format. (See the −x option below.)

−c Match all file or archive members except those specified by the pattern or file
operands.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3223

109087

109088

109089

109090

109091

109092

109093

109094

109095

109096

109097

109098

109099

109100

109101

109102

109103

109104

109105

109106

109107

109108

109109

109110

109111

109112

109113

109114

109115

109116

109117

109118

109119

109120

109121

109122

109123

109124

109125

109126

109127

109128

109129

109130

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

−d Cause files of type directory being copied or archived or archive members of type
directory being extracted or listed to match only the file or archive member itself
and not the file hierarchy rooted at the file.

−f archive Specify the pathname of the input or output archive, overriding the default
standard input (in list or read modes) or standard output (write mode).

−H If a symbolic link referencing a file of type directory is specified on the command
line, pax shall archive the file hierarchy rooted in the file referenced by the link,
using the name of the link as the root of the file hierarchy. Otherwise, if a symbolic
link referencing a file of any other file type which pax can normally archive is
specified on the command line, then pax shall archive the file referenced by the
link, using the name of the link. The default behavior, when neither −H or −L are
specified, shall be to archive the symbolic link itself.

−i Interactively rename files or archive members. For each archive member matching
a pattern operand or file matching a file operand, a prompt shall be written to the
file /dev/tty. The prompt shall contain the name of the file or archive member, but
the format is otherwise unspecified. A line shall then be read from /dev/tty. If this
line is blank, the file or archive member shall be skipped. If this line consists of a
single period, the file or archive member shall be processed with no modification
to its name. Otherwise, its name shall be replaced with the contents of the line. The
pax utility shall immediately exit with a non-zero exit status if end-of-file is
encountered when reading a response or if /dev/tty cannot be opened for reading
and writing.

The results of extracting a hard link to a file that has been renamed during
extraction are unspecified.

−k Prevent the overwriting of existing files.

−l (The letter ell.) In copy mode, hard links shall be made between the source and
destination file hierarchies whenever possible. If specified in conjunction with −H
or −L, when a symbolic link is encountered, the hard link created in the destination
file hierarchy shall be to the file referenced by the symbolic link. If specified when
neither −H nor −L is specified, when a symbolic link is encountered, the
implementation shall create a hard link to the symbolic link in the source file
hierarchy or copy the symbolic link to the destination.

−L If a symbolic link referencing a file of type directory is specified on the command
line or encountered during the traversal of a file hierarchy, pax shall archive the file
hierarchy rooted in the file referenced by the link, using the name of the link as the
root of the file hierarchy. Otherwise, if a symbolic link referencing a file of any
other file type which pax can normally archive is specified on the command line or
encountered during the traversal of a file hierarchy, pax shall archive the file
referenced by the link, using the name of the link. The default behavior, when
neither −H or −L are specified, shall be to archive the symbolic link itself.

−n Select the first archive member that matches each pattern operand. No more than
one archive member shall be matched for each pattern (although members of type
directory shall still match the file hierarchy rooted at that file).

−o options Provide information to the implementation to modify the algorithm for extracting
or writing files. The value of options shall consist of one or more
<comma>-separated keywords of the form:

keyword[[:]=value][,keyword[[:]=value], ...]

3224 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109131

109132

109133

109134

109135

109136

109137

109138

109139

109140

109141

109142

109143

109144

109145

109146

109147

109148

109149

109150

109151

109152

109153

109154

109155

109156

109157

109158

109159

109160

109161

109162

109163

109164

109165

109166

109167

109168

109169

109170

109171

109172

109173

109174

109175

109176

109177

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

Some keywords apply only to certain file formats, as indicated with each
description. Use of keywords that are inapplicable to the file format being
processed produces undefined results.

Keywords in the options argument shall be a string that would be a valid portable
filename as described in XBD Section 3.264 (on page 70).

Note: Keywords are not expected to be filenames, merely to follow the same character
composition rules as portable filenames.

Keywords can be preceded with white space. The value field shall consist of zero or
more characters; within value, the application shall precede any literal <comma>
with a <backslash>, which shall be ignored, but preserves the <comma> as part of
value. A <comma> as the final character, or a <comma> followed solely by white
space as the final characters, in options shall be ignored. Multiple −o options can be
specified; if keywords given to these multiple −o options conflict, the keywords
and values appearing later in command line sequence shall take precedence and
the earlier shall be silently ignored. The following keyword values of options shall
be supported for the file formats as indicated:

delete=pattern
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall omit from extended header records that it produces any keywords
matching the string pattern. When used in read or list mode, pax shall ignore
any keywords matching the string pattern in the extended header records. In
both cases, matching shall be performed using the pattern matching notation
described in Section 2.14.1 (on page 2506) and Section 2.14.2 (on page 2507).
For example:

-o delete=security.*

would suppress security-related information. See pax Extended Header (on
page 3236) for extended header record keyword usage.

When multiple −odelete=pattern options are specified, the patterns shall be
additive; all keywords matching the specified string patterns shall be omitted
from extended header records that pax produces.

exthdr.name=string
(Applicable only to the −x pax format.) This keyword allows user control over
the name that is written into the ustar header blocks for the extended header
produced under the circumstances described in pax Header Block (on page
3235). The name shall be the contents of string, after the following character
substitutions have been made:

string
Includes: Replaced by:

%d The directory name of the file, equivalent to the result of the
dirname utility on the translated pathname.

%f The filename of the file, equivalent to the result of the
basename utility on the translated pathname.

%p The process ID of the pax process.
%% A '%' character.

Any other '%' characters in string produce undefined results.

If no −o exthdr.name=string is specified, pax shall use the following default

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3225

109178

109179

109180

109181

109182

109183

109184

109185

109186

109187

109188

109189

109190

109191

109192

109193

109194

109195

109196

109197

109198

109199

109200

109201

109202

109203

109204

109205

109206

109207

109208

109209

109210

109211

109212

109213

109214

109215

109216

109217

109218

109219

109220

109221

109222

109223

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

value:

%d/PaxHeaders.%p/%f

globexthdr.name=string
(Applicable only to the −x pax format.) When used in write or copy mode
with the appropriate options, pax shall create global extended header records
with ustar header blocks that are treated as regular files by previous versions |
of pax. This keyword allows user control over the name that is written into the
ustar header blocks for global extended header records. The name shall be the
contents of string, after the following character substitutions have been made:

string
Includes: Replaced by:

%n An integer that represents the sequence number of the global
extended header record in the archive, starting at 1.

%p The process ID of the pax process.
%% A '%' character.

Any other '%' characters in string produce undefined results.

If no −o globexthdr.name=string is specified, pax shall use the following
default value:

$TMPDIR/GlobalHead.%p.%n

where $TMPDIR represents the value of the TMPDIR environment variable. If
TMPDIR is not set, pax shall use /tmp.

invalid=action
(Applicable only to the −x pax format.) This keyword allows user control over
the action pax takes upon encountering values in an extended header record
that, in read or copy mode, are invalid in the destination hierarchy or, in list
mode, cannot be written in the codeset and current locale of the
implementation. The following are invalid values that shall be recognized by
pax:

— In read or copy mode, a filename or link name that contains character
encodings invalid in the destination hierarchy. (For example, the name
may contain embedded NULs.)

— In read or copy mode, a filename or link name that is longer than the
maximum allowed in the destination hierarchy (for either a pathname
component or the entire pathname).

— In list mode, any character string value (filename, link name, user name,
and so on) that cannot be written in the codeset and current locale of the
implementation.

The following mutually-exclusive values of the action argument are supported:

binary In write mode, pax shall generate a hdrcharset=BINARY
extended header record for each file with a filename, link name,
group name, owner name, or any other field in an extended
header record that cannot be translated to the UTF-8 codeset,
allowing the archive to contain the files with unencoded
extended header record values. In read or copy mode, pax shall
use the values specified in the header without translation,

3226 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109224

109225

109226

109227

109228

109229

109230

109231

109232

109233

109234

109235

109236

109237

109238

109239

109240

109241

109242

109243

109244

109245

109246

109247

109248

109249

109250

109251

109252

109253

109254

109255

109256

109257

109258

109259

109260

109261

109262

109263

109264

109265

109266

109267

109268

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

regardless of whether this may overwrite an existing file with a
valid name. In list mode, pax shall behave identically to the
bypass action.

bypass In read or copy mode, pax shall bypass the file, causing no
change to the destination hierarchy. In list mode, pax shall write
all requested valid values for the file, but its method for writing
invalid values is unspecified.

rename In read or copy mode, pax shall act as if the −i option were in
effect for each file with invalid filename or link name values,
allowing the user to provide a replacement name interactively.
In list mode, pax shall behave identically to the bypass action.

UTF-8 When used in read, copy, or list mode and a filename, link
name, owner name, or any other field in an extended header
record cannot be translated from the pax UTF-8 codeset format
to the codeset and current locale of the implementation, pax shall
use the actual UTF-8 encoding for the name. If a hdrcharset
extended header record is in effect for this file, the character set
specified by that record shall be used instead of UTF-8. If a
hdrcharset=BINARY extended header record is in effect for this
file, no translation shall be performed.

write In read or copy mode, pax shall write the file, translating the
name, regardless of whether this may overwrite an existing file
with a valid name. In list mode, pax shall behave identically to
the bypass action.

If no −o invalid=option is specified, pax shall act as if −oinvalid=bypass were
specified. Any overwriting of existing files that may be allowed by the
−oinvalid= actions shall be subject to permission (−p) and modification time
(−u) restrictions, and shall be suppressed if the −k option is also specified.

linkdata
(Applicable only to the −x pax format.) In write mode, pax shall write the
contents of a file to the archive even when that file is merely a hard link to a
file whose contents have already been written to the archive.

listopt=format
This keyword specifies the output format of the table of contents produced
when the −v option is specified in list mode. See List Mode Format
Specifications (on page 3230). To avoid ambiguity, the listopt=format shall be
the only or final keyword=value pair in a −o option-argument; all characters
in the remainder of the option-argument shall be considered part of the format
string. When multiple −olistopt=format options are specified, the format
strings shall be considered a single, concatenated string, evaluated in
command line order.

times
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall include atime and mtime extended header records for each file. See pax
Extended Header File Times (on page 3239).

In addition to these keywords, if the −x pax format is specified, any of the
keywords and values defined in pax Extended Header (on page 3236), including

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3227

109269

109270

109271

109272

109273

109274

109275

109276

109277

109278

109279

109280

109281

109282

109283

109284

109285

109286

109287

109288

109289

109290

109291

109292

109293

109294

109295

109296

109297

109298

109299

109300

109301

109302

109303

109304

109305

109306

109307

109308

109309

109310

109311

109312

109313

109314

109315

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

implementation extensions, can be used in −o option-arguments, in either of two
modes:

keyword=value
When used in write or copy mode, these keyword/value pairs shall be
included at the beginning of the archive as typeflag g global extended header
records. When used in read or list mode, these keyword/value pairs shall act
as if they had been at the beginning of the archive as typeflag g global
extended header records.

keyword:=value
When used in write or copy mode, these keyword/value pairs shall be
included as records at the beginning of a typeflag x extended header for each
file. (This shall be equivalent to the <equals-sign> form except that it creates
no typeflag g global extended header records.) When used in read or list
mode, these keyword/value pairs shall act as if they were included as records
at the end of each extended header; thus, they shall override any global or file-
specific extended header record keywords of the same names. For example, in
the command:

pax -r -o "
gname:=mygroup,
" <archive

the group name is forced to a new value for all files read from the archive. |

The precedence of −o keywords over various fields in the archive is described in
pax Extended Header Keyword Precedence (on page 3239). If the −o
delete=pattern, −o keyword=value, or −o keyword:=value options are used to
override or remove any extended header data needed to find files in an archive
(e.g., -o delete=size for a file whose size cannot be represented in a ustar
header or -o size=100 for a file whose size is not 100 bytes), the behavior is
undefined.

−p string Specify one or more file characteristic options (privileges). The string option-
argument shall be a string specifying file characteristics to be retained or discarded
on extraction. The string shall consist of the specification characters a, e, m, o, and
p. Other implementation-defined characters can be included. Multiple
characteristics can be concatenated within the same string and multiple −p options
can be specified. The meaning of the specification characters are as follows:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits (see XBD Section 3.145, on page
52), access time, modification time, and any other implementation-defined file
characteristics.

m Do not preserve file modification times.

o Preserve the user ID and group ID.

p Preserve the file mode bits. Other implementation-defined file mode attributes
may be preserved.

In the preceding list, ``preserve’’ indicates that an attribute stored in the archive
shall be given to the extracted file, subject to the permissions of the invoking
process. The access and modification times of the file shall be preserved unless
otherwise specified with the −p option or not stored in the archive. All attributes

3228 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109316

109317

109318

109319

109320

109321

109322

109323

109324

109325

109326

109327

109328

109329

109330

109331

109332

109333

109334

109335

109336

109337

109338

109339

109340

109341

109342

109343

109344

109345

109346

109347

109348

109349

109350

109351

109352

109353

109354

109355

109356

109357

109358

109359

109360

109361

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

that are not preserved shall be determined as part of the normal file creation action
(see Section 1.1.1.4, on page 2440).

If neither the e nor the o specification character is specified, or the user ID and
group ID are not preserved for any reason, pax shall not set the S_ISUID and
S_ISGID bits of the file mode.

If the preservation of any of these items fails for any reason, pax shall write a
diagnostic message to standard error. Failure to preserve these items shall affect
the final exit status, but shall not cause the extracted file to be deleted.

If file characteristic letters in any of the string option-arguments are duplicated or
conflict with each other, the ones given last shall take precedence. For example, if
−p eme is specified, file modification times are preserved.

−s replstr Modify file or archive member names named by pattern or file operands according
to the substitution expression replstr, using the syntax of the ed utility. The concepts
of ``address’’ and ``line’’ are meaningless in the context of the pax utility, and shall
not be supplied. The format shall be:

-s /old/new/[gpsS] |

where as in ed, old is a basic regular expression and new can contain an
<ampersand>, '\n' (where n is a digit) back-references, or subexpression
matching. The old string shall also be permitted to contain <newline> characters.

Any non-null character can be used as a delimiter ('/' shown here). Multiple −s
expressions can be specified; the expressions shall be applied in the order
specified, terminating with the first successful substitution. The optional trailing
'g' is as defined in the ed utility. The optional trailing 'p' shall cause successful
substitutions to be written to standard error. The optional trailing 's' and 'S' |
control whether the substitutions are applied to symbolic link contents: 's' shall |
cause them not to be applied; 'S' shall cause them to be applied. If neither is |
present, it is unspecified which is the default. If both are present, the behavior is |
unspecified. File or archive member names that substitute to the empty string shall |
be ignored when reading and writing archives. Symbolic link contents that |
substitute to the empty string shall not be treated specially.

−t When reading files from the file system, and if the user has the permissions
required by futimens() to do so, set the access time of each file read to the access |
time that it had before being read by pax.

−u Ignore files that are older (having a less recent file modification time) than a pre-
existing file or archive member with the same name. In read mode, an archive
member with the same name as a file in the file system shall be extracted if the
archive member is newer than the file. In write mode, an archive file member with
the same name as a file in the file system shall be superseded if the file is newer
than the archive member. If −a is also specified, this is accomplished by appending
to the archive; otherwise, it is unspecified whether this is accomplished by actual
replacement in the archive or by appending to the archive. In copy mode, the file |
in the destination hierarchy shall be replaced if the file in the source hierarchy is |
newer.

−v In list mode, produce a verbose table of contents (see the STDOUT section).
Otherwise, write archive member pathnames to standard error (see the STDERR
section).

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3229

109362

109363

109364

109365

109366

109367

109368

109369

109370

109371

109372

109373

109374

109375

109376

109377

109378

109379

109380

109381

109382

109383

109384

109385

109386

109387

109388

109389

109390

109391

109392

109393

109394

109395

109396

109397

109398

109399

109400

109401

109402

109403

109404

109405

109406

109407

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

−x format Specify the output archive format. The pax utility shall support the following
formats:

cpio The cpio interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

pax The pax interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

ustar The tar interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 10 240. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

Implementation-defined formats shall specify a default block size as well as any
other block sizes supported for character special archive files.

Any attempt to append to an archive file in a format different from the existing
archive format shall cause pax to exit immediately with a non-zero exit status.

−X When traversing the file hierarchy specified by a pathname, pax shall not descend |
below directories that have a different device ID (st_dev; see XSH fstatat()) than the |
specified pathname; that is, when a directory with a different device ID is |
encountered, pax shall process (archive or copy) the directory itself but shall not |
process any files below the directory.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error and the last option specified shall determine the behavior of the utility.

The options that operate on the names of files or archive members (−c, −i, −n, −s, −u, and −v)
shall interact as follows. In read mode, the archive members shall be selected based on the user-
specified pattern operands as modified by the −c, −n, and −u options. Then, any −s and −i
options shall modify, in that order, the names of the selected files. The −v option shall write
names resulting from these modifications.

In write mode, the files shall be selected based on the user-specified pathnames as modified by
the −u option. Then, any −s and −i options shall modify, in that order, the names of these |
selected files. The −v option shall write names resulting from these modifications.

If both the −u and −n options are specified, pax shall not consider a file selected unless it is
newer than the file to which it is compared.

List Mode Format Specifications

In list mode with the −o listopt=format option, the format argument shall be applied for each
selected file. The pax utility shall append a <newline> to the listopt output for each selected file.
The format argument shall be used as the format string described in XBD Chapter 5 (on page 113),
with the exceptions 1. through 6. defined in the EXTENDED DESCRIPTION section of printf,
plus the following exceptions:

7. The sequence (keyword) can occur before a format conversion specifier. The conversion
argument is defined by the value of keyword. The implementation shall support the
following keywords:

3230 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109408

109409

109410

109411

109412

109413

109414

109415

109416

109417

109418

109419

109420

109421

109422

109423

109424

109425

109426

109427

109428

109429

109430

109431

109432

109433

109434

109435

109436

109437

109438

109439

109440

109441

109442

109443

109444

109445

109446

109447

109448

109449

109450

109451

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

— Any of the Field Name entries in Table 3-15 (on page 3240) and Table 3-17 (on page
3244). The implementation may support the cpio keywords without the leading c_ in
addition to the form required by Table 3-17 (on page 3244).

— Any keyword defined for the extended header in pax Extended Header (on page
3236).

— Any keyword provided as an implementation-defined extension within the extended
header defined in pax Extended Header (on page 3236).

For example, the sequence "%(charset)s" is the string value of the name of the character
set in the extended header.

The result of the keyword conversion argument shall be the value from the applicable
header field or extended header, without any trailing NULs.

All keyword values used as conversion arguments shall be translated from the UTF-8
encoding (or alternative encoding specified by any hdrcharset extended header record) to
the character set appropriate for the local file system, user database, and so on, as
applicable.

8. An additional conversion specifier character, T, shall be used to specify time formats. The T
conversion specifier character can be preceded by the sequence (keyword=subformat), where
subformat is a date format as defined by date operands. The default keyword shall be mtime
and the default subformat shall be:

%b %e %H:%M %Y

9. An additional conversion specifier character, M, shall be used to specify the file mode string
as defined in ls Standard Output. If (keyword) is omitted, the mode keyword shall be used.
For example, %.1M writes the single character corresponding to the <entry type> field of the
ls −l command.

10. An additional conversion specifier character, D, shall be used to specify the device for block
or special files, if applicable, in an implementation-defined format. If not applicable, and
(keyword) is specified, then this conversion shall be equivalent to %(keyword)u. If not
applicable, and (keyword) is omitted, then this conversion shall be equivalent to <space>.

11. An additional conversion specifier character, F, shall be used to specify a pathname. The F
conversion character can be preceded by a sequence of <comma>-separated keywords:

(keyword[,keyword] ...)

The values for all the keywords that are non-null shall be concatenated together, each
separated by a '/'. The default shall be (path) if the keyword path is defined; otherwise,
the default shall be (prefix,name).

12. An additional conversion specifier character, L, shall be used to specify a symbolic link
expansion. If the current file is a symbolic link, then %L shall expand to:

"%s -> %s", <value of keyword>, <contents of link>

Otherwise, the %L conversion specification shall be the equivalent of %F.

OPERANDS
The following operands shall be supported:

directory The destination directory pathname for copy mode.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3231

109452

109453

109454

109455

109456

109457

109458

109459

109460

109461

109462

109463

109464

109465

109466

109467

109468

109469

109470

109471

109472

109473

109474

109475

109476

109477

109478

109479

109480

109481

109482

109483

109484

109485

109486

109487

109488

109489

109490

109491

109492

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

file A pathname of a file to be copied or archived.

pattern A pattern matching one or more pathnames of archive members. A pattern needs |
to be given in the name-generating notation of the pattern matching notation in
Section 2.14 (on page 2506), including the filename expansion rules in Section
2.14.3 (on page 2508). The default, if no pattern is specified, is to select all members
in the archive.

STDIN
In write mode, the standard input shall be used only if no file operands are specified. It shall be a
file containing a list of pathnames, each terminated by a <newline> character.

In list and read modes, if −f is not specified, the standard input shall be an archive file.

Otherwise, the standard input shall not be used.

INPUT FILES
The input file named by the archive option-argument, or standard input when the archive is read
from there, shall be a file formatted according to one of the specifications in the EXTENDED
DESCRIPTION section or some other implementation-defined format.

The file /dev/tty shall be used to write prompts and read responses.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pax:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 169) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the pattern matching expressions for the
pattern operand and the basic regular expression for the −s option. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files), and the behavior of character classes used in the |
pattern matching expressions for the pattern operand and the basic regular |
expression for the −s option.

LC_MESSAGES
Determine the locale used to affect the format and contents of diagnostic messages |
and prompts written to standard error.

LC_TIME Determine the format and contents of date and time strings when the −v option is
specified.

XSI NLSPATH Determine the location of messages objects and message catalogs. |

TMPDIR Determine the pathname that provides part of the default global extended header
record file, as described for the −o globexthdr= keyword in the OPTIONS section.

TZ Determine the timezone used to calculate date and time strings when the −v option
is specified. If TZ is unset or null, an unspecified default timezone shall be used.

3232 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109493

109494

109495

109496

109497

109498

109499

109500

109501

109502

109503

109504

109505

109506

109507

109508

109509

109510

109511

109512

109513

109514

109515

109516

109517

109518

109519

109520

109521

109522

109523

109524

109525

109526

109527

109528

109529

109530

109531

109532

109533

109534

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

ASYNCHRONOUS EVENTS
Default.

STDOUT
In write mode, if −f is not specified, the standard output shall be the archive formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format (see −x format).

In list mode, when the −olistopt=format has been specified, the selected archive members shall
be written to standard output using the format described under List Mode Format Specifications
(on page 3230). In list mode without the −olistopt=format option, the table of contents of the
selected archive members shall be written to standard output using the following format:

"%s\n", <pathname>

If the −v option is specified in list mode, the table of contents of the selected archive members
shall be written to standard output using the following formats.

For pathnames representing hard links to previous members of the archive:

"%s∆==∆%s\n", <ls -l listing>, <linkname>

For all other pathnames:

"%s\n", <ls -l listing>

where <ls −l listing> shall be the format specified by the ls utility with the −l option. When
writing pathnames in this format, it is unspecified what is written for fields for which the
underlying archive format does not have the correct information, although the correct number of
<blank>-separated fields shall be written.

In list mode, standard output shall not be buffered more than a pathname (plus any associated
information and a <newline> terminator) at a time.

STDERR
If −v is specified in read, write, or copy modes, pax shall write the pathnames it processes to the
standard error output using the following format:

"%s\n", <pathname>

These pathnames shall be written as soon as processing is begun on the file or archive member,
and shall be flushed to standard error. The trailing <newline>, which shall not be buffered, is
written when the file has been read or written.

If the −s option is specified, and the replacement string has a trailing 'p', substitutions shall be
written to standard error in the following format:

"%s∆>>∆%s\n", <original pathname>, <new pathname>

In all operating modes of pax, optional messages of unspecified format concerning the input
archive format and volume number, the number of files, blocks, volumes, and media parts as
well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how non-printable
characters in pathnames or link names are written.

When using the −xpax archive format, if a filename, link name, group name, owner name, or any
other field in an extended header record cannot be translated between the codeset in use for that
extended header record and the character set of the current locale, pax shall write a diagnostic
message to standard error, shall process the file as described for the −o invalid= option, and then
shall continue processing with the next file.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3233

109535

109536

109537

109538

109539

109540

109541

109542

109543

109544

109545

109546

109547

109548

109549

109550

109551

109552

109553

109554

109555

109556

109557

109558

109559

109560

109561

109562

109563

109564

109565

109566

109567

109568

109569

109570

109571

109572

109573

109574

109575

109576

109577

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

OUTPUT FILES
In read mode, the extracted output files shall be of the archived file type. In copy mode, the
copied output files shall be the type of the file being copied. In either mode, existing files in the
destination hierarchy shall be overwritten only when all permission (−p), modification time (−u),
and invalid-value (−oinvalid=) tests allow it.

In write mode, the output file named by the −f option-argument shall be a file formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format.

EXTENDED DESCRIPTION

pax Interchange Format

A pax archive tape or file produced in the −xpax format shall contain a series of blocks. The
physical layout of the archive shall be identical to the ustar format described in ustar
Interchange Format (on page 3240). Each file archived shall be represented by the following
sequence:

• An optional header block with extended header records. This header block is of the form
described in pax Header Block (on page 3235), with a typeflag value of x or g. The
extended header records, described in pax Extended Header (on page 3236), shall be
included as the data for this header block.

• A header block that describes the file. Any fields in the preceding optional extended
header shall override the associated fields in this header block for this file.

• Zero or more blocks that contain the contents of the file.

At the end of the archive file there shall be two 512-byte blocks filled with binary zeros,
interpreted as an end-of-archive indicator.

A schematic of an example archive with global extended header records and two actual files is
shown in Figure 3-1 (on page 3235). In the example, the second file in the archive has no
extended header preceding it, presumably because it has no need for extended attributes.

3234 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109578

109579

109580

109581

109582

109583

109584

109585

109586

109587

109588

109589

109590

109591

109592

109593

109594

109595

109596

109597

109598

109599

109600

109601

109602

109603

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

ustar Header [typeflag=g]

Global Extended Header Data

ustar Header [typeflag=x]

Extended Header Data

ustar Header [typeflag=0]

Data for File 1

ustar Header [typeflag=0]

Data for File 2

Block of binary zeros

Block of binary zeros

Global Extended Header

File 1: Extended Header is
included

File 2: No Extended Header is
included

End of Archive Indicator

}

}
}
}

Figure 3-1 pax Format Archive Example

pax Header Block

The pax header block shall be identical to the ustar header block described in ustar Interchange
Format (on page 3240), except that two additional typeflag values are defined:

x Represents extended header records for the following file in the archive (which shall have
its own ustar header block). The format of these extended header records shall be as
described in pax Extended Header (on page 3236).

g Represents global extended header records for the following files in the archive. The format
of these extended header records shall be as described in pax Extended Header (on page
3236). Each value shall affect all subsequent files that do not override that value in their
own extended header record and until another global extended header record is reached
that provides another value for the same field. The typeflag g global headers should not be
used with interchange media that could suffer partial data loss in transporting the archive.

For both of these types, the size field shall be the size of the extended header records in octets.
The other fields in the header block are not meaningful to this version of the pax utility.
However, if this archive is read by a pax utility conforming to the ISO POSIX-2: 1993 standard,
the header block fields are used to create a regular file that contains the extended header records
as data. Therefore, header block field values should be selected to provide reasonable file access
to this regular file.

A further difference from the ustar header block is that data blocks for files of typeflag 1 (the digit
one) (hard link) may be included, which means that the size field may be greater than zero.
Archives created by pax −o linkdata shall include these data blocks with the hard links.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3235

109604

109605

109606

109607

109608

109609

109610

109611

109612

109613

109614

109615

109616

109617

109618

109619

109620

109621

109622

109623

109624

109625

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

pax Extended Header

A pax extended header contains values that are inappropriate for the ustar header block because
of limitations in that format: fields requiring a character encoding other than that described in
the ISO/IEC 646: 1991 standard, fields representing file attributes not described in the ustar
header, and fields whose format or length do not fit the requirements of the ustar header. The
values in an extended header add attributes to the following file (or files; see the description of
the typeflag g header block) or override values in the following header block(s), as indicated in
the following list of keywords.

An extended header shall consist of one or more records, each constructed as follows:

"%d %s=%s\n", <length>, <keyword>, <value>

The extended header records shall be encoded according to the ISO/IEC 10646-1: 2000 standard
UTF-8 encoding. The <length> field, <blank>, <equals-sign>, and <newline> shown shall be
limited to the portable character set, as encoded in UTF-8. The <keyword> fields can be any
UTF-8 characters. The <length> field shall be the decimal length of the extended header record
in octets, including the trailing <newline>. If there is a hdrcharset extended header in effect for
a file, the value field for any gname, linkpath, path, and uname extended header records shall be
encoded using the character set specified by the hdrcharset extended header record; otherwise,
the value field shall be encoded using UTF-8. The value field for all other keywords specified by
POSIX.1-202x shall be encoded using UTF-8.

The <keyword> field shall be one of the entries from the following list or a keyword provided as
an implementation extension. Keywords consisting entirely of lowercase letters, digits, and
periods are reserved for future standardization. A keyword shall not include an <equals-sign>.
(In the following list, the notations ``file(s)’’ or ``block(s)’’ is used to acknowledge that a keyword
affects the following single file after a typeflag x extended header, but possibly multiple files after
typeflag g. Any requirements in the list for pax to include a record when in write or copy mode
shall apply only when such a record has not already been provided through the use of the −o
option. When used in copy mode, pax shall behave as if an archive had been created with
applicable extended header records and then extracted.)

atime The file access time for the following file(s), equivalent to the value of the st_atim |
member of the stat structure for a file, as described by the stat() function. The
access time shall be restored if the process has appropriate privileges required to
do so. The format of the <value> shall be as described in pax Extended Header File
Times (on page 3239).

charset The name of the character set used to encode the data in the following file(s). The
entries in the following table are defined to refer to known standards; additional
names may be agreed on between the originator and recipient.

3236 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109626

109627

109628

109629

109630

109631

109632

109633

109634

109635

109636

109637

109638

109639

109640

109641

109642

109643

109644

109645

109646

109647

109648

109649

109650

109651

109652

109653

109654

109655

109656

109657

109658

109659

109660

109661

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

<value> Formal Standard

ISO-IR∆646∆1990 ISO/IEC 646: 1990
ISO-IR∆8859∆1∆1998 ISO/IEC 8859-1: 1998
ISO-IR∆8859∆2∆1999 ISO/IEC 8859-2: 1999
ISO-IR∆8859∆3∆1999 ISO/IEC 8859-3: 1999
ISO-IR∆8859∆4∆1998 ISO/IEC 8859-4: 1998
ISO-IR∆8859∆5∆1999 ISO/IEC 8859-5: 1999
ISO-IR∆8859∆6∆1999 ISO/IEC 8859-6: 1999
ISO-IR∆8859∆7∆1987 ISO/IEC 8859-7: 1987
ISO-IR∆8859∆8∆1999 ISO/IEC 8859-8: 1999
ISO-IR∆8859∆9∆1999 ISO/IEC 8859-9: 1999
ISO-IR∆8859∆10∆1998 ISO/IEC 8859-10: 1998
ISO-IR∆8859∆13∆1998 ISO/IEC 8859-13: 1998
ISO-IR∆8859∆14∆1998 ISO/IEC 8859-14: 1998
ISO-IR∆8859∆15∆1999 ISO/IEC 8859-15: 1999
ISO-IR∆10646∆2000 ISO/IEC 10646: 2000
ISO-IR∆10646∆2000∆UTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

The encoding is included in an extended header for information only; when pax is
used as described in POSIX.1-202x, it shall not translate the file data into any other
encoding. The BINARY entry indicates unencoded binary data.

When used in write or copy mode, it is implementation-defined whether pax
includes a charset extended header record for a file.

comment A series of characters used as a comment. All characters in the <value> field shall
be ignored by pax.

gid The group ID of the group that owns the file, expressed as a decimal number using
digits from the ISO/IEC 646: 1991 standard. This record shall override the gid field
in the following header block(s). When used in write or copy mode, pax shall
include a gid extended header record for each file whose group ID is greater than
2 097 151 (octal 7 777 777).

gname The group of the file(s), formatted as a group name in the group database. This
record shall override the gid and gname fields in the following header block(s), and
any gid extended header record. When used in read, copy, or list mode, pax shall
translate the name from the encoding in the header record to the character set
appropriate for the group database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the
−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a gname extended header
record for each file whose group name cannot be represented entirely with the
letters and digits of the portable character set.

hdrcharset The name of the character set used to encode the value field of the gname,
linkpath, path, and uname pax extended header records. The entries in the
following table are defined to refer to known standards; additional names may be
agreed between the originator and the recipient.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3237

109662

109663

109664

109665

109666

109667

109668

109669

109670

109671

109672

109673

109674

109675

109676

109677

109678

109679

109680

109681

109682

109683

109684

109685

109686

109687

109688

109689

109690

109691

109692

109693

109694

109695

109696

109697

109698

109699

109700

109701

109702

109703

109704

109705

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

<value> Formal Standard

ISO-IR∆10646∆2000∆UTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

If no hdrcharset extended header record is specified, the default character set used
to encode all values in extended header records shall be the ISO/IEC 10646-1: 2000
standard UTF-8 encoding.

The BINARY entry indicates that all values recorded in extended headers for
affected files are unencoded binary data from the underlying system.

linkpath The pathname of a link being created to another file, of any type, previously
archived. This record shall override the linkname field in the following ustar header
block(s). The following ustar header block shall determine the type of link created.
If typeflag of the following header block is 1, it shall be a hard link. If typeflag is 2, it
shall be a symbolic link and the linkpath value shall be the contents of the
symbolic link. The pax utility shall translate the name of the link (contents of the
symbolic link) from the encoding in the header to the character set appropriate for
the local file system. When used in write or copy mode, pax shall include a
linkpath extended header record for each link whose pathname cannot be
represented entirely with the members of the portable character set other than
NUL.

mtime The file modification time of the following file(s), equivalent to the value of the |
st_mtim member of the stat structure for a file, as described in the stat() function.
This record shall override the mtime field in the following header block(s). The
modification time shall be restored if the process has appropriate privileges
required to do so. The format of the <value> shall be as described in pax Extended
Header File Times (on page 3239).

path The pathname of the following file(s). This record shall override the name and
prefix fields in the following header block(s). The pax utility shall translate the
pathname of the file from the encoding in the header to the character set
appropriate for the local file system.

When used in write or copy mode, pax shall include a path extended header record
for each file whose pathname cannot be represented entirely with the members of
the portable character set other than NUL.

realtime.any The keywords prefixed by ``realtime.’’ are reserved for future standardization.

security.any The keywords prefixed by ``security.’’ are reserved for future standardization.

size The size of the file in octets, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the size field in the
following header block(s). When used in write or copy mode, pax shall include a
size extended header record for each file with a size value greater than 8 589 934 591
(octal 77 777 777 777).

uid The user ID of the file owner, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the uid field in the
following header block(s). When used in write or copy mode, pax shall include a
uid extended header record for each file whose owner ID is greater than 2 097 151
(octal 7 777 777).

3238 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109706

109707

109708

109709

109710

109711

109712

109713

109714

109715

109716

109717

109718

109719

109720

109721

109722

109723

109724

109725

109726

109727

109728

109729

109730

109731

109732

109733

109734

109735

109736

109737

109738

109739

109740

109741

109742

109743

109744

109745

109746

109747

109748

109749

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

uname The owner of the following file(s), formatted as a user name in the user database.
This record shall override the uid and uname fields in the following header block(s),
and any uid extended header record. When used in read, copy, or list mode, pax
shall translate the name from the encoding in the header record to the character set
appropriate for the user database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the
−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a uname extended header
record for each file whose user name cannot be represented entirely with the letters
and digits of the portable character set.

If the <value> field is zero length, it shall delete any header block field, previously entered
extended header value, or global extended header value of the same name.

If a keyword in an extended header record (or in a −o option-argument) overrides or deletes a
corresponding field in the ustar header block, pax shall ignore the contents of that header block
field.

Unlike the ustar header block fields, NULs shall not delimit <value>s; all characters within the
<value> field shall be considered data for the field. None of the length limitations of the ustar
header block fields in Table 3-15 (on page 3240) shall apply to the extended header records.

pax Extended Header Keyword Precedence

This section describes the precedence in which the various header records and fields and
command line options are selected to apply to a file in the archive. When pax is used in read or
list modes, it shall determine a file attribute in the following sequence:

1. If −odelete=keyword-prefix is used, the affected attributes shall be determined from step
7., if applicable, or ignored otherwise.

2. If −okeyword:= is used, the affected attributes shall be ignored.

3. If −okeyword:=value is used, the affected attribute shall be assigned the value.

4. If there is a typeflag x extended header record, the affected attribute shall be assigned the
<value>. When extended header records conflict, the last one given in the header shall
take precedence.

5. If −okeyword=value is used, the affected attribute shall be assigned the value.

6. If there is a typeflag g global extended header record, the affected attribute shall be
assigned the <value>. When global extended header records conflict, the last one given in
the global header shall take precedence.

7. Otherwise, the attribute shall be determined from the ustar header block.

pax Extended Header File Times

The pax utility shall write an mtime record for each file in write or copy modes if the file’s
modification time cannot be represented exactly in the ustar header logical record described in
ustar Interchange Format (on page 3240). This can occur if the time is out of ustar range, or if
the file system of the underlying implementation supports non-integer time granularities and
the time is not an integer. All of these time records shall be formatted as a decimal representation
of the time in seconds since the Epoch. If a <period> ('.') decimal point character is present,
the digits to the right of the point shall represent the units of a subsecond timing granularity,
where the first digit is tenths of a second and each subsequent digit is a tenth of the previous
digit. In read or copy mode, the pax utility shall truncate the time of a file to the greatest value

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3239

109750

109751

109752

109753

109754

109755

109756

109757

109758

109759

109760

109761

109762

109763

109764

109765

109766

109767

109768

109769

109770

109771

109772

109773

109774

109775

109776

109777

109778

109779

109780

109781

109782

109783

109784

109785

109786

109787

109788

109789

109790

109791

109792

109793

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

that is not greater than the input header file time. In write or copy mode, the pax utility shall
output a time exactly if it can be represented exactly as a decimal number, and otherwise shall
generate only enough digits so that the same time shall be recovered if the file is extracted on a
system whose underlying implementation supports the same time granularity.

ustar Interchange Format

A ustar archive tape or file shall contain a series of logical records. Each logical record shall be a
fixed-size logical record of 512 octets (see below). Although this format may be thought of as
being stored on 9-track industry-standard 12.7 mm (0.5 in) magnetic tape, other types of
transportable media are not excluded. Each file archived shall be represented by a header logical
record that describes the file, followed by zero or more logical records that give the contents of
the file. At the end of the archive file there shall be two 512-octet logical records filled with
binary zeros, interpreted as an end-of-archive indicator.

The logical records may be grouped for physical I/O operations, as described under the
−bblocksize and −x ustar options. Each group of logical records may be written with a single
operation equivalent to the write() function. On magnetic tape, the result of this write shall be a
single tape physical block. The last physical block shall always be the full size, so logical records
after the two zero logical records may contain undefined data.

The header logical record shall be structured as shown in the following table. All lengths and
offsets are in decimal.

Table 3-15 ustar Header Block

Field Name Octet Offset Length (in Octets)

name 0 100
mode 100 8
uid 108 8
gid 116 8
size 124 12
mtime 136 12
chksum 148 8
typeflag 156 1
linkname 157 100
magic 257 6
version 263 2
uname 265 32
gname 297 32
devmajor 329 8
devminor 337 8
prefix 345 155

All characters in the header logical record shall be represented in the coded character set of the
ISO/IEC 646: 1991 standard. For maximum portability between implementations, names should
be selected from characters represented by the portable filename character set as octets with the
most significant bit zero. If an implementation supports the use of characters outside of <slash>
and the portable filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for interchange
purposes.

However, the pax utility shall never create filenames on the local system that cannot be accessed

3240 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109794

109795

109796

109797

109798

109799

109800

109801

109802

109803

109804

109805

109806

109807

109808

109809

109810

109811

109812

109813

109814

109815

109816

109817

109818

109819

109820

109821

109822

109823

109824

109825

109826

109827

109828

109829

109830

109831

109832

109833

109834

109835

109836

109837

109838

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

via the procedures described in POSIX.1-202x. If a filename is found on the medium that would
create an invalid filename, it is implementation-defined whether the data from the file is stored
on the file hierarchy and under what name it is stored. The pax utility may choose to ignore these
files as long as it produces an error indicating that the file is being ignored.

Each field within the header logical record is contiguous; that is, there is no padding used. Each
character on the archive medium shall be stored contiguously.

The fields magic, uname, and gname are character strings each terminated by a NUL character.
The fields name, linkname, and prefix are NUL-terminated character strings except when all
characters in the array contain non-NUL characters including the last character. The version field
is two octets containing the characters "00" (zero-zero). The typeflag contains a single character.
All other fields are leading zero-filled octal numbers using digits from the ISO/IEC 646: 1991
standard IRV. Each numeric field is terminated by one or more <space> or NUL characters.

The name and the prefix fields shall produce the pathname of the file. A new pathname shall be
formed, if prefix is not an empty string (its first character is not NUL), by concatenating prefix (up
to the first NUL character), a <slash> character, and name; otherwise, name is used alone. In
either case, name is terminated at the first NUL character. If prefix begins with a NUL character, it
shall be ignored. In this manner, pathnames of at most 256 characters can be supported. If a
pathname does not fit in the space provided, pax shall notify the user of the error, and shall not
store any part of the file—header or data—on the medium.

The linkname field, described below, shall not use the prefix to produce a pathname. As such, a
linkname is limited to 100 characters. If the name does not fit in the space provided, pax shall
notify the user of the error, and shall not attempt to store the link on the medium.

The mode field provides 12 bits encoded in the ISO/IEC 646: 1991 standard octal digit
representation. The encoded bits shall represent the following values:

Table 3-16 ustar mode Field

Bit Value POSIX.1-202x Bit Description

04 000 S_ISUID Set UID on execution.
02 000 S_ISGID Set GID on execution.
01 000 <reserved> Reserved for future standardization.
00 400 S_IRUSR Read permission for file owner class.
00 200 S_IWUSR Write permission for file owner class.
00 100 S_IXUSR Execute/search permission for file owner class.
00 040 S_IRGRP Read permission for file group class.
00 020 S_IWGRP Write permission for file group class.
00 010 S_IXGRP Execute/search permission for file group class.
00 004 S_IROTH Read permission for file other class.
00 002 S_IWOTH Write permission for file other class.
00 001 S_IXOTH Execute/search permission for file other class.

When appropriate privileges are required to set one of these mode bits, and the user restoring
the files from the archive does not have appropriate privileges, the mode bits for which the user
does not have appropriate privileges shall be ignored. Some of the mode bits in the archive
format are not mentioned elsewhere in this volume of POSIX.1-202x. If the implementation does
not support those bits, they may be ignored.

The uid and gid fields are the user and group ID of the owner and group of the file, respectively.

The size field is the size of the file in octets. If the typeflag field is set to specify a file to be of type |
1 (a hard link) or 2 (a symbolic link), the size field shall be specified as zero. If the typeflag field is

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3241

109839

109840

109841

109842

109843

109844

109845

109846

109847

109848

109849

109850

109851

109852

109853

109854

109855

109856

109857

109858

109859

109860

109861

109862

109863

109864

109865

109866

109867

109868

109869

109870

109871

109872

109873

109874

109875

109876

109877

109878

109879

109880

109881

109882

109883

109884

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

set to specify a file of type 5 (directory), the size field shall be interpreted as described under the
definition of that record type. No data logical records are stored for types 1, 2, or 5. If the typeflag
field is set to 3 (character special file), 4 (block special file), or 6 (FIFO), the meaning of the size
field is unspecified by this volume of POSIX.1-202x, and no data logical records shall be stored
on the medium. Additionally, for type 6, the size field shall be ignored when reading. If the
typeflag field is set to any other value, the number of logical records written following the header
shall be (size+511)/512, ignoring any fraction in the result of the division.

The mtime field shall be the modification time of the file at the time it was archived. It is the
ISO/IEC 646: 1991 standard representation of the octal value of the modification time obtained
from the stat() function.

The chksum field shall be the ISO/IEC 646: 1991 standard IRV representation of the octal value of
the simple sum of all octets in the header logical record. Each octet in the header shall be treated
as an unsigned value. These values shall be added to an unsigned integer, initialized to zero, the
precision of which is not less than 17 bits. When calculating the checksum, the chksum field is
treated as if it were all <space> characters.

The typeflag field specifies the type of file archived. If a particular implementation does not
recognize the type, or the user does not have appropriate privileges to create that type, the file
shall be extracted as if it were a regular file if the file type is defined to have a meaning for the
size field that could cause data logical records to be written on the medium (see the previous
description for size). If conversion to a regular file occurs, the pax utility shall produce an error
indicating that the conversion took place. All of the typeflag fields shall be coded in the
ISO/IEC 646: 1991 standard IRV:

0 Represents a regular file. For backwards-compatibility, a typeflag value of binary zero
('\0') should be recognized as meaning a regular file when extracting files from the
archive. Archives written with this version of the archive file format create regular files
with a typeflag value of the ISO/IEC 646: 1991 standard IRV '0'.

1 Represents a file linked to another file, of any type, previously archived. Such files are
identified by having the same device and file serial numbers, and pathnames that refer
to different directory entries. All such files shall be archived as linked files. The linked-
to name is specified in the linkname field with a NUL-character terminator if it is less
than 100 octets in length.

2 Represents a symbolic link. The contents of the symbolic link shall be stored in the
linkname field.

3,4 Represent character special files and block special files respectively. In this case the
devmajor and devminor fields shall contain information defining the device, the format
of which is unspecified by this volume of POSIX.1-202x. Implementations may map the
device specifications to their own local specification or may ignore the entry.

5 Specifies a directory or subdirectory. On systems where disk allocation is performed on
a directory basis, the size field shall contain the maximum number of octets (which may
be rounded to the nearest disk block allocation unit) that the directory may hold. A size
field of zero indicates no such limiting. Systems that do not support limiting in this
manner should ignore the size field.

6 Specifies a FIFO special file. Note that the archiving of a FIFO file archives the existence
of this file and not its contents.

7 Reserved to represent a file to which an implementation has associated some high-
performance attribute. Implementations without such extensions should treat this file
as a regular file (type 0).

3242 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109885

109886

109887

109888

109889

109890

109891

109892

109893

109894

109895

109896

109897

109898

109899

109900

109901

109902

109903

109904

109905

109906

109907

109908

109909

109910

109911

109912

109913

109914

109915

109916

109917

109918

109919

109920

109921

109922

109923

109924

109925

109926

109927

109928

109929

109930

109931

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

A-Z The letters 'A' to 'Z', inclusive, are reserved for custom implementations. All other
values are reserved for future versions of this standard.

It is unspecified whether files with pathnames that refer to the same directory entry are archived
as linked files or as separate files. If they are archived as linked files, this means that attempting
to extract both pathnames from the resulting archive always causes an error (unless the −u |
option is used) because the link cannot be created.

It is unspecified whether files with the same device and file serial numbers being appended to
an archive are treated as linked files to members that were in the archive before the append.

Attempts to archive a socket shall produce a diagnostic message when ustar interchange format
is used, but may be allowed when pax interchange format is used. Handling of other file types is
implementation-defined.

The magic field is the specification that this archive was output in this archive format. If this field
contains ustar (the five characters from the ISO/IEC 646: 1991 standard IRV shown followed by
NUL), the uname and gname fields shall contain the ISO/IEC 646: 1991 standard IRV
representation of the owner and group of the file, respectively (truncated to fit, if necessary).
When the file is restored by a privileged, protection-preserving version of the utility, the user
and group databases shall be scanned for these names. If found, the user and group IDs
contained within these files shall be used rather than the values contained within the uid and gid
fields.

cpio Interchange Format

The octet-oriented cpio archive format shall be a series of entries, each comprising a header that
describes the file, the name of the file, and then the contents of the file.

An archive may be recorded as a series of fixed-size blocks of octets. This blocking shall be used
only to make physical I/O more efficient. The last group of blocks shall always be at the full
size.

For the octet-oriented cpio archive format, the individual entry information shall be in the order
indicated and described by the following table; see also the <cpio.h> header.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3243

109932

109933

109934

109935

109936

109937

109938

109939

109940

109941

109942

109943

109944

109945

109946

109947

109948

109949

109950

109951

109952

109953

109954

109955

109956

109957

109958

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

Table 3-17 Octet-Oriented cpio Archive Entry

Header Field Name Length (in Octets) Interpreted as

c_magic 6 Octal number
c_dev 6 Octal number
c_ino 6 Octal number
c_mode 6 Octal number
c_uid 6 Octal number
c_gid 6 Octal number
c_nlink 6 Octal number
c_rdev 6 Octal number
c_mtime 11 Octal number
c_namesize 6 Octal number
c_filesize 11 Octal number

Filename Field Name Length Interpreted as

c_name c_namesize Pathname string

File Data Field Name Length Interpreted as

c_filedata c_filesize Data

cpio Header

For each file in the archive, a header as defined previously shall be written. The information in
the header fields is written as streams of the ISO/IEC 646: 1991 standard characters interpreted
as octal numbers. The octal numbers shall be extended to the necessary length by appending the
ISO/IEC 646: 1991 standard IRV zeros at the most-significant-digit end of the number; the result
is written to the most-significant digit of the stream of octets first. The fields shall be interpreted
as follows:

c_magic Identify the archive as being a transportable archive by containing the identifying
value "070707".

c_dev, c_ino Contains values that uniquely identify the file within the archive (that is, no files
contain the same pair of c_dev and c_ino values unless they are links to the same
file). The values shall be determined in an unspecified manner.

c_mode Contains the file type and access permissions as defined in the following table.

3244 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

109959

109960

109961

109962

109963

109964

109965

109966

109967

109968

109969

109970

109971

109972

109973

109974

109975

109976

109977

109978

109979

109980

109981

109982

109983

109984

109985

109986

109987

109988

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

Table 3-18 Values for cpio c_mode Field

File Permissions Name Value Indicates

C_IRUSR 000 400 Read by owner
C_IWUSR 000 200 Write by owner
C_IXUSR 000 100 Execute by owner
C_IRGRP 000 040 Read by group
C_IWGRP 000 020 Write by group
C_IXGRP 000 010 Execute by group
C_IROTH 000 004 Read by others
C_IWOTH 000 002 Write by others
C_IXOTH 000 001 Execute by others
C_ISUID 004 000 Set uid
C_ISGID 002 000 Set gid
C_ISVTX 001 000 Reserved

File Type Name Value Indicates

C_ISDIR 040 000 Directory
C_ISFIFO 010 000 FIFO
C_ISREG 0100 000 Regular file
C_ISLNK 0120 000 Symbolic link

C_ISBLK 060 000 Block special file
C_ISCHR 020 000 Character special file
C_ISSOCK 0140 000 Socket

C_ISCTG 0110 000 Reserved

Directories, FIFOs, symbolic links, and regular files shall be supported on a system
conforming to this volume of POSIX.1-202x; additional values defined previously
are reserved for compatibility with existing systems. Additional file types may be
supported; however, such files should not be written to archives intended to be
transported to other systems.

c_uid Contains the user ID of the owner.

c_gid Contains the group ID of the group.

c_nlink Contains a number greater than or equal to the number of links in the archive
referencing the file. If the −a option is used to append to a cpio archive, then the pax
utility need not account for the files in the existing part of the archive when
calculating the c_nlink values for the appended part of the archive, and need not
alter the c_nlink values in the existing part of the archive if additional files with the
same c_dev and c_ino values are appended to the archive.

c_rdev Contains implementation-defined information for character or block special files.

c_mtime Contains the latest time of modification of the file at the time the archive was
created.

c_namesize Contains the length of the pathname, including the terminating NUL character.

c_filesize Contains the length in octets of the data section following the header structure.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3245

109989

109990

109991

109992

109993

109994

109995

109996

109997

109998

109999

110000

110001

110002

110003

110004

110005

110006

110007

110008

110009

110010

110011

110012

110013

110014

110015

110016

110017

110018

110019

110020

110021

110022

110023

110024

110025

110026

110027

110028

110029

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

cpio Filename

The c_name field shall contain the pathname of the file. The length of this field in octets is the
value of c_namesize.

If a filename is found on the medium that would create an invalid pathname, it is
implementation-defined whether the data from the file is stored on the file hierarchy and under
what name it is stored.

All characters shall be represented in the ISO/IEC 646: 1991 standard IRV. For maximum
portability between implementations, names should be selected from characters represented by
the portable filename character set as octets with the most significant bit zero. If an
implementation supports the use of characters outside the portable filename character set in
names for files, users, and groups, one or more implementation-defined encodings of these
characters shall be provided for interchange purposes. However, the pax utility shall never create
filenames on the local system that cannot be accessed via the procedures described previously in
this volume of POSIX.1-202x. If a filename is found on the medium that would create an invalid
filename, it is implementation-defined whether the data from the file is stored on the local file
system and under what name it is stored. The pax utility may choose to ignore these files as long
as it produces an error indicating that the file is being ignored.

cpio File Data

Following c_name, there shall be c_filesize octets of data. Interpretation of such data occurs in a
manner dependent on the file. For regular files, the data shall consist of the contents of the file.
For symbolic links, the data shall consist of the contents of the symbolic link. If c_filesize is zero,
no data shall be contained in c_filedata.

When restoring from an archive:

• If the user does not have appropriate privileges to create a file of the specified type, pax
shall ignore the entry and write an error message to standard error.

• Only regular files and symbolic links have data to be restored. Presuming a regular file
meets any selection criteria that might be imposed on the format-reading utility by the
user, such data shall be restored.

• If a user does not have appropriate privileges to set a particular mode flag, the flag shall be
ignored. Some of the mode flags in the archive format are not mentioned elsewhere in this
volume of POSIX.1-202x. If the implementation does not support those flags, they may be
ignored.

cpio Special Entries

FIFO special files, directories, and the trailer shall be recorded with c_filesize equal to zero.
Symbolic links shall be recorded with c_filesize equal to the length of the contents of the symbolic
link. For other special files, c_filesize is unspecified by this volume of POSIX.1-202x. The header
for the next file entry in the archive shall be written directly after the last octet of the file entry
preceding it. A header denoting the filename TRAILER!!! shall indicate the end of the archive;
the contents of octets in the last block of the archive following such a header are undefined.

EXIT STATUS
The following exit values shall be returned:

0 All files were processed successfully.

3246 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110030

110031

110032

110033

110034

110035

110036

110037

110038

110039

110040

110041

110042

110043

110044

110045

110046

110047

110048

110049

110050

110051

110052

110053

110054

110055

110056

110057

110058

110059

110060

110061

110062

110063

110064

110065

110066

110067

110068

110069

110070

110071

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

>0 An error occurred.

CONSEQUENCES OF ERRORS
If pax cannot create a file or a link when reading an archive or cannot find a file when writing an
archive, or cannot preserve the user ID, group ID, or file mode when the −p option is specified, a
diagnostic message shall be written to standard error and a non-zero exit status shall be
returned, but processing shall continue. In the case where pax cannot create a hard link to a file, |
pax shall not, by default, create a second copy of the file.

If the extraction of a file from an archive is prematurely terminated by a signal or error, pax may
have only partially extracted the file or (if the −n option was not specified) may have extracted a
file of the same name as that specified by the user, but which is not the file the user wanted.
Additionally, the file modes of extracted directories may have additional bits from the S_IRWXU
mask set as well as incorrect modification and access times.

APPLICATION USAGE
Caution is advised when using the −a option to append to a cpio format archive. If any of the
files being appended happen to be given the same c_dev and c_ino values as a file in the existing
part of the archive, then they may be treated as links to that file on extraction. Thus, it is risky to
use −a with cpio format except when it is done on the same system that the original archive was
created on, and with the same pax utility, and in the knowledge that there has been little or no
file system activity since the original archive was created that could lead to any of the files
appended being given the same c_dev and c_ino values as an unrelated file in the existing part of
the archive. Also, when (intentionally) appending additional links to a file in the existing part of
the archive, the c_nlink values in the modified archive can be smaller than the number of links to
the file in the archive, which may mean that the links are not preserved on extraction.

The −p (privileges) option was invented to reconcile differences between historical tar and cpio
implementations. In particular, the two utilities use −m in diametrically opposed ways. The −p
option also provides a consistent means of extending the ways in which future file attributes can
be addressed, such as for enhanced security systems or high-performance files. Although it may
seem complex, there are really two modes that are most commonly used:

−p e ``Preserve everything’’. This would be used by the historical superuser, someone with
all appropriate privileges, to preserve all aspects of the files as they are recorded in the
archive. The e flag is the sum of o and p, and other implementation-defined attributes.

−p p ``Preserve’’ the file mode bits. This would be used by the user with regular privileges
who wished to preserve aspects of the file other than the ownership. The file times are
preserved by default, but two other flags are offered to disable these and use the time
of extraction.

The one pathname per line format of standard input precludes pathnames containing <newline>
characters. Although such pathnames violate the portable filename guidelines, they may exist
and their presence may inhibit usage of pax within shell scripts. This problem is inherited from
historical archive programs. The problem can be avoided by listing filename arguments on the
command line instead of on standard input.

It is almost certain that appropriate privileges are required for pax to accomplish parts of this
volume of POSIX.1-202x. Specifically, creating files of type block special or character special,
restoring file access times unless the files are owned by the user (the −t option), or preserving file
owner, group, and mode (the −p option) all probably require appropriate privileges.

In read mode, implementations are permitted to overwrite files when the archive has multiple
members with the same name. This may fail if permissions on the first version of the file do not
permit it to be overwritten.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3247

110072

110073

110074

110075

110076

110077

110078

110079

110080

110081

110082

110083

110084

110085

110086

110087

110088

110089

110090

110091

110092

110093

110094

110095

110096

110097

110098

110099

110100

110101

110102

110103

110104

110105

110106

110107

110108

110109

110110

110111

110112

110113

110114

110115

110116

110117

110118

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

The cpio and ustar formats can only support files up to 8 589 934 592 bytes (8 ∗ 2ˆ30) in size.

When archives containing binary header information are listed , the filenames printed may
cause strange behavior on some terminals.

When all of the following are true:

1. A file of type directory is being placed into an archive.

2. The ustar archive format is being used.

3. The pathname of the directory is less than or equal to 155 bytes long (it will fit in the prefix
field in the ustar header block).

4. The last component of the pathname of the directory is longer than 100 bytes long (it will
not fit in the name field in the ustar header block).

some implementations of the pax utility will place the entire directory pathname in the prefix
field, set the name field to an empty string, and place the directory in the archive. Other
implementations of the pax utility will give an error under these conditions because the name
field is not large enough to hold the last component of the directory name. This standard allows
either behavior. However, when extracting a directory from a ustar format archive, this standard
requires that all implementations be able to extract a directory even if the name field contains an
empty string as long as the prefix field does not also contain an empty string.

When restricting file hierarchy traversal to one file system, it can sometimes be desirable for the +
crossing points themselves to be processed (archived or copied) and sometimes for them not to +
be processed. (Crossing points are mount points and, if the −L option is specified, symbolic links +
to directories on other file systems.) With the −X option pax processes them, but there is no +
standard way to have pax not process them. However, this can be achieved by using find to do +
the hierarchy traversal and piping the output of find to pax (with the −d option); see the +
APPLICATION USAGE for find .

EXAMPLES
The following command:

pax -w -f /dev/rmt/1m .

copies the contents of the current directory to tape drive 1, medium density (assuming historical
System V device naming procedures—the historical BSD device name would be /dev/rmt9).

The following commands:

mkdir newdir

pax -rw olddir newdir

copy the olddir directory hierarchy to newdir.

pax -r -s ',^//*usr//*,,' -f a.pax

reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the current
directory.

Using the option:

-o listopt="%M %(atime)T %(size)D %(name)s"

overrides the default output description in Standard Output and instead writes:

-rw-rw--- Jan 12 15:53 2003 1492 /usr/foo/bar

Using the options:

3248 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110119

110120

110121

110122

110123

110124

110125

110126

110127

110128

110129

110130

110131

110132

110133

110134

110135

110136

110137

110138

110139

110140

110141

110142

110143

110144

110145

110146

110147

110148

110149

110150

110151

110152

110153

110154

110155

110156

110157

110158

110159

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

-o listopt='%L\t%(size)D\n%.7' \
-o listopt='(name)s\n%(atime)T\n%T'

overrides the default output description in Standard Output and instead writes:

/usr/foo/bar -> /tmp 1492
/usr/fo
Jan 12 15:53 1991
Jan 31 15:53 2003

RATIONALE
The pax utility was new for the ISO POSIX-2: 1993 standard. It represents a peaceful compromise
between advocates of the historical tar and cpio utilities.

A fundamental difference between cpio and tar was in the way directories were treated. The cpio
utility did not treat directories differently from other files, and to select a directory and its
contents required that each file in the hierarchy be explicitly specified. For tar, a directory
matched every file in the file hierarchy it rooted.

The pax utility offers both interfaces; by default, directories map into the file hierarchy they root.
The −d option causes pax to skip any file not explicitly referenced, as cpio historically did. The tar
−style behavior was chosen as the default because it was believed that this was the more
common usage and because tar is the more commonly available interface, as it was historically
provided on both System V and BSD implementations.

The data interchange format specification in this volume of POSIX.1-202x requires that processes
with ``appropriate privileges’’ shall always restore the ownership and permissions of extracted
files exactly as archived. If viewed from the historic equivalence between superuser and
``appropriate privileges’’, there are two problems with this requirement. First, users running as
superusers may unknowingly set dangerous permissions on extracted files. Second, it is
needlessly limiting, in that superusers cannot extract files and own them as superuser unless the
archive was created by the superuser. (It should be noted that restoration of ownerships and
permissions for the superuser, by default, is historical practice in cpio, but not in tar.) In order to
avoid these two problems, the pax specification has an additional ``privilege’’ mechanism, the −p
option. Only a pax invocation with the privileges needed, and which has the −p option set using
the e specification character, has appropriate privileges to restore full ownership and permission
information.

Note also that this volume of POSIX.1-202x requires that the file ownership and access
permissions shall be set, on extraction, in the same fashion as the creat() function when provided
with the mode stored in the archive. This means that the file creation mask of the user is applied
to the file permissions.

Users should note that directories may be created by pax while extracting files with permissions
that are different from those that existed at the time the archive was created. When extracting
sensitive information into a directory hierarchy that no longer exists, users are encouraged to set
their file creation mask appropriately to protect these files during extraction.

The table of contents output is written to standard output to facilitate pipeline processing.

An early proposal had hard links displaying for all pathnames. This was removed because it
complicates the output of the case where −v is not specified and does not match historical cpio
usage. The hard-link information is available in the −v display.

The description of the −l option allows implementations to make hard links to symbolic links.
Earlier versions of this standard did not specify any way to create a hard link to a symbolic link,
but many implementations provided this capability as an extension. If there are hard links to

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3249

110160

110161

110162

110163

110164

110165

110166

110167

110168

110169

110170

110171

110172

110173

110174

110175

110176

110177

110178

110179

110180

110181

110182

110183

110184

110185

110186

110187

110188

110189

110190

110191

110192

110193

110194

110195

110196

110197

110198

110199

110200

110201

110202

110203

110204

110205

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

symbolic links when an archive is created, the implementation is required to archive the hard
link in the archive (unless −H or −L is specified). When in read mode and in copy mode,
implementations supporting hard links to symbolic links should use them when appropriate.

The archive formats inherited from the POSIX.1-1990 standard have certain restrictions that have
been brought along from historical usage. For example, there are restrictions on the length of
pathnames stored in the archive. When pax is used in copy(−rw) mode (copying directory
hierarchies), the ability to use extensions from the −xpax format overcomes these restrictions.

The default blocksize value of 5 120 bytes for cpio was selected because it is one of the standard
block-size values for cpio, set when the −B option is specified. (The other default block-size value
for cpio is 512 bytes, and this was considered to be too small.) The default block value of 10 240
bytes for tar was selected because that is the standard block-size value for BSD tar. The
maximum block size of 32 256 bytes (215−512 bytes) is the largest multiple of 512 bytes that fits
into a signed 16-bit tape controller transfer register. There are known limitations in some
historical systems that would prevent larger blocks from being accepted. Historical values were
chosen to improve compatibility with historical scripts using dd or similar utilities to manipulate
archives. Also, default block sizes for any file type other than character special file has been
deleted from this volume of POSIX.1-202x as unimportant and not likely to affect the structure of
the resulting archive.

Implementations are permitted to modify the block-size value based on the archive format or the
device to which the archive is being written. This is to provide implementations with the
opportunity to take advantage of special types of devices, and it should not be used without a
great deal of consideration as it almost certainly decreases archive portability.

The intended use of the −n option was to permit extraction of one or more files from the archive
without processing the entire archive. This was viewed by the standard developers as offering
significant performance advantages over historical implementations. The −n option in early
proposals had three effects; the first was to cause special characters in patterns to not be treated
specially. The second was to cause only the first file that matched a pattern to be extracted. The
third was to cause pax to write a diagnostic message to standard error when no file was found
matching a specified pattern. Only the second behavior is retained by this volume of
POSIX.1-202x, for many reasons. First, it is in general not acceptable for a single option to have
multiple effects. Second, the ability to make pattern matching characters act as normal characters
is useful for parts of pax other than file extraction. Third, a finer degree of control over the
special characters is useful because users may wish to normalize only a single special character
in a single filename. Fourth, given a more general escape mechanism, the previous behavior of
the −n option can be easily obtained using the −s option or a sed script. Finally, writing a
diagnostic message when a pattern specified by the user is unmatched by any file is useful
behavior in all cases.

In this version, the −n was removed from the copy mode synopsis of pax; it is inapplicable
because there are no pattern operands specified in this mode.

There is another method than pax for copying subtrees in POSIX.1-202x described as part of the
cp utility. Both methods are historical practice: cp provides a simpler, more intuitive interface,
while pax offers a finer granularity of control. Each provides additional functionality to the
other; in particular, pax maintains the hard-link structure of the hierarchy while cp does not. It is
the intention of the standard developers that the results be similar (using appropriate option
combinations in both utilities). The results are not required to be identical; there seemed
insufficient gain to applications to balance the difficulty of implementations having to guarantee
that the results would be exactly identical.

A single archive may span more than one file. It is suggested that implementations provide

3250 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110206

110207

110208

110209

110210

110211

110212

110213

110214

110215

110216

110217

110218

110219

110220

110221

110222

110223

110224

110225

110226

110227

110228

110229

110230

110231

110232

110233

110234

110235

110236

110237

110238

110239

110240

110241

110242

110243

110244

110245

110246

110247

110248

110249

110250

110251

110252

110253

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

informative messages to the user on standard error whenever the archive file is changed.

The −d option (do not create intermediate directories not listed in the archive) found in early
proposals was originally provided as a complement to the historic −d option of cpio. It has been
deleted.

The −s option in early proposals specified a subset of the substitution command from the ed
utility. As there was no reason for only a subset to be supported, the −s option is now compatible
with the current ed specification. Since the delimiter can be any non-null character, the following
usage with single <space> characters is valid:

pax -s " foo bar " ...

The −t description is worded so as to note that this may cause the access time update caused by
some other activity (which occurs while the file is being read) to be overwritten.

The default behavior of pax with regard to file modification times is the same as historical
implementations of tar. It is not the historical behavior of cpio.

Because the −i option uses /dev/tty, utilities without a controlling terminal are not able to use
this option.

The −y option, found in early proposals, has been deleted because a line containing a single
<period> for the −i option has equivalent functionality. The special lines for the −i option (a
single <period> and the empty line) are historical practice in cpio.

In early drafts, a −echarmap option was included to increase portability of files between systems
using different coded character sets. This option was omitted because it was apparent that
consensus could not be formed for it. In this version, the use of UTF-8 should be an adequate
substitute.

The ISO POSIX-2: 1993 standard and ISO POSIX-1 standard requirements for pax, however,
made it very difficult to create a single archive containing files created using extended characters
provided by different locales. This version adds the hdrcharset keyword to make it possible to
archive files in these cases without dropping files due to translation errors.

Translating filenames and other attributes from a locale’s encoding to UTF-8 and then back again
can lose information, as the resulting filename might not be byte-for-byte equivalent to the
original. To avoid this problem, users can specify the −o hdrcharset=binary option, which will
cause the resulting archive to use binary format for all names and attributes. Such archives are
not portable among hosts that use different native encodings (e.g., EBCDIC versus ASCII-based
encodings), but they will allow interchange among the vast majority of POSIX file systems in
practical use. Also, the −o hdrcharset=binary option will cause pax in copy mode to behave
more like other standard utilities such as cp.

If the values specified by the −o exthdr.name=value, −o globexthdr.name=value, or by
$TMPDIR (if −o globexthdr.name is not specified) require a character encoding other than that
described in the ISO/IEC 646: 1991 standard, a path extended header record will have to be
created for the file. If a hdrcharset extended header record is active for such headers, it will
determine the codeset used for the value field in these extended path header records. These path
extended header records always need to be created when writing an archive even if
hdrcharset=binary has been specified and would contain the same (binary) data that appears in
the ustar header record prefix and name fields. (In other words, an extended header path record
is always required to be generated if the prefix or name fields contain non-ASCII characters even
when hdrcharset=binary is also in effect for that file.)

The −k option was added to address international concerns about the dangers involved in the
character set transformations of −e (if the target character set were different from the source, the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3251

110254

110255

110256

110257

110258

110259

110260

110261

110262

110263

110264

110265

110266

110267

110268

110269

110270

110271

110272

110273

110274

110275

110276

110277

110278

110279

110280

110281

110282

110283

110284

110285

110286

110287

110288

110289

110290

110291

110292

110293

110294

110295

110296

110297

110298

110299

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

filenames might be transformed into names matching existing files) and also was made more
general to protect files transferred between file systems with different {NAME_MAX} values
(truncating a filename on a smaller system might also inadvertently overwrite existing files). As
stated, it prevents any overwriting, even if the target file is older than the source. This version
adds more granularity of options to solve this problem by introducing the −oinvalid=option—
specifically the UTF-8 and binary actions. (Note that an existing file is still subject to overwriting
in this case. The −k option closes that loophole.)

Some of the file characteristics referenced in this volume of POSIX.1-202x might not be
supported by some archive formats. For example, neither the tar nor cpio formats contain the
file access time. For this reason, the e specification character has been provided, intended to
cause all file characteristics specified in the archive to be retained.

It is required that extracted directories, by default, have their access and modification times and
permissions set to the values specified in the archive. This has obvious problems in that the
directories are almost certainly modified after being extracted and that directory permissions
may not permit file creation. One possible solution is to create directories with the mode
specified in the archive, as modified by the umask of the user, with sufficient permissions to
allow file creation. After all files have been extracted, pax would then reset the access and
modification times and permissions as necessary.

The list-mode formatting description borrows heavily from the one defined by the printf utility.
However, since there is no separate operand list to get conversion arguments, the format was
extended to allow specifying the name of the conversion argument as part of the conversion
specification.

The T conversion specifier allows time fields to be displayed in any of the date formats. Unlike
the ls utility, pax does not adjust the format when the date is less than six months in the past.
This makes parsing the output more predictable.

The D conversion specifier handles the ability to display the major/minor or file size, as with ls,
by using %−8(size)D.

The L conversion specifier handles the ls display for symbolic links.

Conversion specifiers were added to generate existing known types used for ls.

pax Interchange Format

The new POSIX data interchange format was developed primarily to satisfy international
concerns that the ustar and cpio formats did not provide for file, user, and group names encoded
in characters outside a subset of the ISO/IEC 646: 1991 standard. The standard developers
realized that this new POSIX data interchange format should be very extensible because there
were other requirements they foresaw in the near future:

• Support international character encodings and locale information

• Support security information (ACLs, and so on)

• Support future file types, such as realtime or contiguous files

• Include data areas for implementation use

• Support systems with words larger than 32 bits and timers with subsecond granularity

The following were not goals for this format because these are better handled by separate
utilities or are inappropriate for a portable format:

3252 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110300

110301

110302

110303

110304

110305

110306

110307

110308

110309

110310

110311

110312

110313

110314

110315

110316

110317

110318

110319

110320

110321

110322

110323

110324

110325

110326

110327

110328

110329

110330

110331

110332

110333

110334

110335

110336

110337

110338

110339

110340

110341

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

• Encryption

• Compression

• Data translation between locales and codesets

• inode storage

The format chosen to support the goals is an extension of the ustar format. Of the two formats
previously available, only the ustar format was selected for extensions because:

• It was easier to extend in an upwards-compatible way. It offered version flags and header
block type fields with room for future standardization. The cpio format, while possessing a
more flexible file naming methodology, could not be extended without breaking some
theoretical implementation or using a dummy filename that could be a legitimate filename.

• Industry experience since the original ``tar wars’’ fought in developing the ISO POSIX-1
standard has clearly been in favor of the ustar format, which is generally the default
output format selected for pax implementations on new systems.

The new format was designed with one additional goal in mind: reasonable behavior when an
older tar or pax utility happened to read an archive. Since the POSIX.1-1990 standard mandated
that a ``format-reading utility’’ had to treat unrecognized typeflag values as regular files, this
allowed the format to include all the extended information in a pseudo-regular file that
preceded each real file. An option is given that allows the archive creator to set up reasonable
names for these files on the older systems. Also, the normative text suggests that reasonable file
access values be used for this ustar header block. Making these header files inaccessible for
convenient reading and deleting would not be reasonable. File permissions of 600 or 700 are
suggested.

The ustar typeflag field was used to accommodate the additional functionality of the new format
rather than magic or version because the POSIX.1-1990 standard (and, by reference, the previous
version of pax), mandated the behavior of the format-reading utility when it encountered an
unknown typeflag, but was silent about the other two fields.

Early proposals for the first version of this standard contained a proposed archive format that
was based on compatibility with the standard for tape files (ISO 1001, similar to the format used
historically on many mainframes and minicomputers). This format was overly complex and
required considerable overhead in volume and header records. Furthermore, the standard
developers felt that it would not be acceptable to the community of POSIX developers, so it was
later changed to be a format more closely related to historical practice on POSIX systems.

The prefix and name split of pathnames in ustar was replaced by the single path extended
header record for simplicity.

The concept of a global extended header (typeflagg) was controversial. If this were applied to an
archive being recorded on magnetic tape, a few unreadable blocks at the beginning of the tape
could be a serious problem; a utility attempting to extract as many files as possible from a
damaged archive could lose a large percentage of file header information in this case. However,
if the archive were on a reliable medium, such as a CD-ROM, the global extended header offers
considerable potential size reductions by eliminating redundant information. Thus, the text
warns against using the global method for unreliable media and provides a method for
implanting global information in the extended header for each file, rather than in the typeflag g
records.

No facility for data translation or filtering on a per-file basis is included because the standard
developers could not invent an interface that would allow this in an efficient manner. If a filter,
such as encryption or compression, is to be applied to all the files, it is more efficient to apply the

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3253

110342

110343

110344

110345

110346

110347

110348

110349

110350

110351

110352

110353

110354

110355

110356

110357

110358

110359

110360

110361

110362

110363

110364

110365

110366

110367

110368

110369

110370

110371

110372

110373

110374

110375

110376

110377

110378

110379

110380

110381

110382

110383

110384

110385

110386

110387

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

filter to the entire archive as a single file. The standard developers considered interfaces that
would invoke a shell script for each file going into or out of the archive, but the system overhead
in this approach was considered to be too high.

One such approach would be to have filter= records that give a pathname for an executable.
When the program is invoked, the file and archive would be open for standard input/output
and all the header fields would be available as environment variables or command-line
arguments. The standard developers did discuss such schemes, but they were omitted from
POSIX.1-202x due to concerns about excessive overhead. Also, the program itself would need to
be in the archive if it were to be used portably.

There is currently no portable means of identifying the character set(s) used for a file in the file
system. Therefore, pax has not been given a mechanism to generate charset records
automatically. The only portable means of doing this is for the user to write the archive using the
−ocharset=string command line option. This assumes that all of the files in the archive use the
same encoding. The ``implementation-defined’’ text is included to allow for a system that can
identify the encodings used for each of its files.

The table of standards that accompanies the charset record description is acknowledged to be
very limited. Only a limited number of character set standards is reasonable for maximal
interchange. Any character set is, of course, possible by prior agreement. It was suggested that
EBCDIC be listed, but it was omitted because it is not defined by a formal standard. Formal
standards, and then only those with reasonably large followings, can be included here, simply as
a matter of practicality. The <value>s represent names of officially registered character sets in the
format required by the ISO 2375: 1985 standard.

The normal <comma> or <blank>-separated list rules are not followed in the case of keyword
options to allow ease of argument parsing for getopts.

Further information on character encodings is in pax Archive Character Set Encoding/Decoding
(on page 3256).

The standard developers have reserved keyword name space for vendor extensions. It is
suggested that the format to be used is:

VENDOR.keyword

where VENDOR is the name of the vendor or organization in all uppercase letters. It is further
suggested that the keyword following the <period> be named differently than any of the
standard keywords so that it could be used for future standardization, if appropriate, by
omitting the VENDOR prefix.

The <length> field in the extended header record was included to make it simpler to step
through the records, even if a record contains an unknown format (to a particular pax) with
complex interactions of special characters. It also provides a minor integrity checkpoint within
the records to aid a program attempting to recover files from a damaged archive.

There are no extended header versions of the devmajor and devminor fields because the
unspecified format ustar header field should be sufficient. If they are not, vendor-specific
extended keywords (such as VENDOR.devmajor) should be used.

Device and i-number labeling of files was not adopted from cpio; files are interchanged strictly
on a symbolic name basis, as in ustar.

Just as with the ustar format descriptions, the new format makes no special arrangements for
multi-volume archives. Each of the pax archive types is assumed to be inside a single POSIX file
and splitting that file over multiple volumes (diskettes, tape cartridges, and so on), processing
their labels, and mounting each in the proper sequence are considered to be implementation

3254 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110388

110389

110390

110391

110392

110393

110394

110395

110396

110397

110398

110399

110400

110401

110402

110403

110404

110405

110406

110407

110408

110409

110410

110411

110412

110413

110414

110415

110416

110417

110418

110419

110420

110421

110422

110423

110424

110425

110426

110427

110428

110429

110430

110431

110432

110433

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

details that cannot be described portably.

The pax format is intended for interchange, not only for backup on a single (family of) systems.
It is not as densely packed as might be possible for backup:

• It contains information as coded characters that could be coded in binary.

• It identifies extended records with name fields that could be omitted in favor of a fixed-
field layout.

• It translates names into a portable character set and identifies locale-related information,
both of which are probably unnecessary for backup.

The requirements on restoring from an archive are slightly different from the historical wording,
allowing for non-monolithic privilege to bring forward as much as possible. In particular,
attributes such as ``high performance file’’ might be broadly but not universally granted while
set-user-ID or chown() might be much more restricted. There is no implication in POSIX.1-202x
that the security information be honored after it is restored to the file hierarchy, in spite of what
might be improperly inferred by the silence on that topic. That is a topic for another standard.

Hard links are recorded in the fashion described here because a hard link can be to any file type. |
It is desirable in general to be able to restore part of an archive selectively and restore all of those |
files completely. If the data is not associated with each hard link, it is not possible to do this. |
However, the data associated with a file can be large, and when selective restoration is not
needed, this can be a significant burden. The archive is structured so that files that have no
associated data can always be restored by the name of any link name of any hard link, and the |
user can choose whether data is recorded with each instance of a file that contains data. The |
format permits mixing of hard links with data and hard links without data in a single archive; |
this can be done for special needs, and pax is expected to interpret such archives on input
properly, despite the fact that there is no pax option that would force this mixed case on output.
(When −o linkdata is used, the output must contain the duplicate data, but the implementation
is free to include it or omit it when −o linkdata is not used.)

The time values are included as extended header records for those implementations needing
more than the eleven octal digits allowed by the ustar format. Portable file timestamps cannot be
negative. If pax encounters a file with a negative timestamp in copy or write mode, it can reject
the file, substitute a non-negative timestamp, or generate a non-portable timestamp with a
leading '−'. Even though some implementations can support finer file-time granularities than
seconds, the normative text requires support only for seconds since the Epoch because the
ISO POSIX-1 standard states them that way. The ustar format includes only mtime; the new
format adds atime and ctime for symmetry. The atime access time restored to the file system will
be affected by the −p a and −p e options. The ctime creation time (actually inode modification
time) is described with appropriate privileges so that it can be ignored when writing to the file
system. POSIX does not provide a portable means to change file creation time. Nothing is
intended to prevent a non-portable implementation of pax from restoring the value.

The gid, size, and uid extended header records were included to allow expansion beyond the
sizes specified in the regular tar header. New file system architectures are emerging that will
exhaust the 12-digit size field. There are probably not many systems requiring more than 8 digits
for user and group IDs, but the extended header values were included for completeness,
allowing overrides for all of the decimal values in the tar header.

The standard developers intended to describe the effective results of pax with regard to file
ownerships and permissions; implementations are not restricted in timing or sequencing the
restoration of such, provided the results are as specified.

Much of the text describing the extended headers refers to use in ``write or copy modes’’. The

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3255

110434

110435

110436

110437

110438

110439

110440

110441

110442

110443

110444

110445

110446

110447

110448

110449

110450

110451

110452

110453

110454

110455

110456

110457

110458

110459

110460

110461

110462

110463

110464

110465

110466

110467

110468

110469

110470

110471

110472

110473

110474

110475

110476

110477

110478

110479

110480

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

copy mode references are due to the normative text: ``The effect of the copy shall be as if the
copied files were written to an archive file and then subsequently extracted . . .’’. There is
certainly no way to test whether pax is actually generating the extended headers in copy mode,
but the effects must be as if it had.

pax Archive Character Set Encoding/Decoding

There is a need to exchange archives of files between systems of different native codesets.
Filenames, group names, and user names must be preserved to the fullest extent possible when
an archive is read on the receiving platform. Translation of the contents of files is not within the
scope of the pax utility.

There will also be the need to represent characters that are not available on the receiving
platform. These unsupported characters cannot be automatically folded to the local set of
characters due to the chance of collisions. This could result in overwriting previous extracted
files from the archive or pre-existing files on the system.

For these reasons, the codeset used to represent characters within the extended header records of
the pax archive must be sufficiently rich to handle all commonly used character sets. The fields
requiring translation include, at a minimum, filenames, user names, group names, and link
pathnames. Implementations may wish to have localized extended keywords that use non-
portable characters.

The standard developers considered the following options:

• The archive creator specifies the well-defined name of the source codeset. The receiver
must then recognize the codeset name and perform the appropriate translations to the
destination codeset.

• The archive creator includes within the archive the character mapping table for the source
codeset used to encode extended header records. The receiver must then read the
character mapping table and perform the appropriate translations to the destination
codeset.

• The archive creator translates the extended header records in the source codeset into a
canonical form. The receiver must then perform the appropriate translations to the
destination codeset.

The approach that incorporates the name of the source codeset poses the problem of codeset
name registration, and makes the archive useless to pax archive decoders that do not recognize
that codeset.

Because parts of an archive may be corrupted, the standard developers felt that including the
character map of the source codeset was too fragile. The loss of this one key component could
result in making the entire archive useless. (The difference between this and the global extended
header decision was that the latter has a workaround—duplicating extended header records on
unreliable media—but this would be too burdensome for large character set maps.)

Both of the above approaches also put an undue burden on the pax archive receiver to handle the
cross-product of all source and destination codesets.

To simplify the translation from the source codeset to the canonical form and from the canonical
form to the destination codeset, the standard developers decided that the internal representation
should be a stateless encoding. A stateless encoding is one where each codepoint has the same
meaning, without regard to the decoder being in a specific state. An example of a stateful
encoding would be the Japanese Shift-JIS; an example of a stateless encoding would be the
ISO/IEC 646: 1991 standard (equivalent to 7-bit ASCII).

3256 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110481

110482

110483

110484

110485

110486

110487

110488

110489

110490

110491

110492

110493

110494

110495

110496

110497

110498

110499

110500

110501

110502

110503

110504

110505

110506

110507

110508

110509

110510

110511

110512

110513

110514

110515

110516

110517

110518

110519

110520

110521

110522

110523

110524

110525

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

For these reasons, the standard developers decided to adopt a canonical format for the
representation of file information strings. The obvious, well-endorsed candidate is the
ISO/IEC 10646-1: 2000 standard (based in part on Unicode), which can be used to represent the
characters of virtually all standardized character sets. The standard developers initially agreed
upon using UCS2 (16-bit Unicode) as the internal representation. This repertoire of characters
provides a sufficiently rich set to represent all commonly-used codesets.

However, the standard developers found that the 16-bit Unicode representation had some
problems. It forced the issue of standardizing byte ordering. The 2-byte length of each character
made the extended header records twice as long for the case of strings coded entirely from
historical 7-bit ASCII. For these reasons, the standard developers chose the UTF-8 defined in the
ISO/IEC 10646-1: 2000 standard. This multi-byte representation encodes UCS2 or UCS4
characters reliably and deterministically, eliminating the need for a canonical byte ordering. In
addition, NUL octets and other characters possibly confusing to POSIX file systems do not
appear, except to represent themselves. It was realized that certain national codesets take up
more space after the encoding, due to their placement within the UCS range; it was felt that the
usefulness of the encoding of the names outweighs the disadvantage of size increase for file,
user, and group names.

The encoding of UTF-8 is as follows:

UCS4 Hex Encoding UTF-8 Binary Encoding

00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

where each 'x' represents a bit value from the character being translated.

ustar Interchange Format

The description of the ustar format reflects numerous enhancements over pre-1988 versions of
the historical tar utility. The goal of these changes was not only to provide the functional
enhancements desired, but also to retain compatibility between new and old versions. This
compatibility has been retained. Archives written using the old archive format are compatible
with the new format.

Implementors should be aware that the previous file format did not include a mechanism to
archive directory type files. For this reason, the convention of using a filename ending with
<slash> was adopted to specify a directory on the archive.

The total size of the name and prefix fields have been set to meet the minimum requirements for
{PATH_MAX}. If a pathname will fit within the name field, it is recommended that the pathname
be stored there without the use of the prefix field. Although the name field is known to be too
small to contain {PATH_MAX} characters, the value was not changed in this version of the
archive file format to retain backwards-compatibility, and instead the prefix was introduced.
Also, because of the earlier version of the format, there is no way to remove the restriction on the
linkname field being limited in size to just that of the name field.

The size field is required to be meaningful in all implementation extensions, although it could be
zero. This is required so that the data blocks can always be properly counted.

It is suggested that if device special files need to be represented that cannot be represented in the
standard format, that one of the extension types (A-Z) be used, and that the additional

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3257

110526

110527

110528

110529

110530

110531

110532

110533

110534

110535

110536

110537

110538

110539

110540

110541

110542

110543

110544

110545

110546

110547

110548

110549

110550

110551

110552

110553

110554

110555

110556

110557

110558

110559

110560

110561

110562

110563

110564

110565

110566

110567

110568

110569

110570

110571

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

information for the special file be represented as data and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary data and conflicts with
an existing filename, need not be specially detected by the utility. If run as an ordinary user, pax
should not be able to overwrite the entries in, for example, /dev in any case (whether the file is
converted to another type or not). If run as a privileged user, it should be able to do so, and it
would be considered a bug if it did not. The same is true of ordinary data files and similarly
named special files; it is impossible to anticipate the needs of the user (who could really intend
to overwrite the file), so the behavior should be predictable (and thus regular) and rely on the
protection system as required.

The value 7 in the typeflag field is intended to define how contiguous files can be stored in a
ustar archive. POSIX.1-202x does not require the contiguous file extension, but does define a
standard way of archiving such files so that all conforming systems can interpret these file types
in a meaningful and consistent manner. On a system that does not support extended file types,
the pax utility should do the best it can with the file and go on to the next.

The file protection modes are those conventionally used by the ls utility. This is extended beyond
the usage in the ISO POSIX-2 standard to support the ``shared text’’ or ``sticky’’ bit. It is intended
that the conformance document should not document anything beyond the existence of and
support of such a mode. Further extensions are expected to these bits, particularly with
overloading the set-user-ID and set-group-ID flags.

cpio Interchange Format

The reference to appropriate privileges in the cpio format refers to an error on standard output;
the ustar format does not make comparable statements.

The model for this format was the historical System V cpio−c data interchange format. This
model documents the portable version of the cpio format and not the binary version. It has the
flexibility to transfer data of any type described within POSIX.1-202x, yet is extensible to transfer
data types specific to extensions beyond POSIX.1-202x (for example, contiguous files). Because it
describes existing practice, there is no question of maintaining upwards-compatibility.

cpio Header

There has been some concern that the size of the c_ino field of the header is too small to handle
those systems that have very large inode numbers. However, the c_ino field in the header is used
strictly as a hard-link resolution mechanism for archives. It is not necessarily the same value as
the inode number of the file in the location from which that file is extracted.

The name c_magic is based on historical usage.

cpio Filename

For most historical implementations of the cpio utility, {PA TH_MAX} octets can be used to
describe the pathname without the addition of any other header fields (the NUL character
would be included in this count). {PATH_MAX} is the minimum value for pathname size,
documented as 256 bytes. However, an implementation may use c_namesize to determine the
exact length of the pathname. With the current description of the <cpio.h> header, this
pathname size can be as large as a number that is described in six octal digits.

Two values are documented under the c_mode field values to provide for extensibility for known
file types:

3258 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110572

110573

110574

110575

110576

110577

110578

110579

110580

110581

110582

110583

110584

110585

110586

110587

110588

110589

110590

110591

110592

110593

110594

110595

110596

110597

110598

110599

110600

110601

110602

110603

110604

110605

110606

110607

110608

110609

110610

110611

110612

110613

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

0110 000 Reserved for contiguous files. The implementation may treat the rest of the
information for this archive like a regular file. If this file type is undefined, the
implementation may create the file as a regular file.

This provides for extensibility of the cpio format while allowing for the ability to read old
archives. Files of an unknown type may be read as ``regular files’’ on some implementations. On
a system that does not support extended file types, the pax utility should do the best it can with
the file and go on to the next.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2457), cp , ed , getopts , ls , printf

XBD Section 3.145 (on page 52), Chapter 5 (on page 113), Chapter 8 (on page 167), Section 12.2
(on page 215), <cpio.h>, <tar.h>

XSH chown(), creat(), fstatat(), futimens(), mkdir(), mkfifo(), write() -

CHANGE HISTORY
First released in Issue 4.

Issue 5
A note is added to the APPLICATION USAGE indicating that the cpio and tar formats can only
support files up to 8 gigabytes in size.

Issue 6
The pax utility is aligned with the IEEE P1003.2b draft standard:

• Support has been added for symbolic links in the options and interchange formats.

• A new format has been devised, based on extensions to ustar.

• References to the ``extended’’ tar and cpio formats derived from the POSIX.1-1990
standard have been changed to remove the ``extended’’ adjective because this could cause
confusion with the extended tar header added in this version. (All references to tar are
actually to ustar.)

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #168 is applied, clarifying that mkdir() and mkfifo() calls can
ignore an [EEXIST] error when extracting an archive.

IEEE PASC Interpretation 1003.2 #180 is applied, clarifying how extracted files are created when
in read mode.

IEEE PASC Interpretation 1003.2 #181 is applied, clarifying the description of the −t option.

IEEE PASC Interpretation 1003.2 #195 is applied.

IEEE PASC Interpretation 1003.2 #206 is applied, clarifying the handling of links for the −H, −L,
and −l options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/35 is applied, adding the process ID of
the pax process into certain fields. This change provides a method for the implementation to
ensure that different instances of pax extracting a file named /a/b/foo will not collide when
processing the extended header information associated with foo.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/36 is applied, changing −x B to −x pax in
the OPTIONS section.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3259

110614

110615

110616

110617

110618

110619

110620

110621

110622

110623

110624

110625

110626

110627

110628

110629

110630

110631

110632

110633

110634

110635

110636

110637

110638

110639

110640

110641

110642

110643

110644

110645

110646

110647

110648

110649

110650

110651

110652

110653

110654

110655

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

pax Utilities

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/20 is applied, updating the SYNOPSIS to
be consistent with the normative text.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/21 is applied, updating the
DESCRIPTION to describe the behavior when files to be linked are symbolic links and the
system is not capable of making hard links to symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/22 is applied, updating the OPTIONS
section to describe the behavior for how multiple −odelete=pattern options are to be handled.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/23 is applied, updating the write option
within the OPTIONS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/24 is applied, adding a paragraph into
the OPTIONS section that states that specifying more than one of the mutually-exclusive options
(−H and −L) is not considered an error and that the last option specified will determine the
behavior of the utility.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/25 is applied, removing the ctime
paragraph within the EXTENDED DESCRIPTION. There is a contradiction in the definition of
the ctime keyword for the pax extended header, in that the st_ctime member of the stat structure
does not refer to a file creation time. No field in the standard stat structure from <sys/stat.h>
includes a file creation time.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/26 is applied, making it clear that typeflag
1 (ustar Interchange Format) applies not only to files that are hard-linked, but also to files that
are aliased via symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/27 is applied, clarifying the cpio c_nlink
field.

Issue 7
Austin Group Interpretations 1003.1-2001 #011, #036, #086, and #109 are applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

SD5-XCU-ERN-2 is applied, making −c and −n mutually-exclusive in the SYNOPSIS.

SD5-XCU-ERN-3 is applied, revising the default behavior of −H and −L.

SD5-XCU-ERN-5, SD5-XCU-ERN-6, SD5-XCU-ERN-7, SD5-XCU-ERN-60 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The pax utility is no longer allowed to create separate identical symbolic links when extracting
linked symbolic links from an archive.

POSIX.1-2008, Technical Corrigendum 1, XCU/TC1-2008/0128 [260], XCU/TC1-2008/0129
[261], XCU/TC1-2008/0130 [261], XCU/TC1-2008/0131 [313], and XCU/TC1-2008/0132 [233]
are applied.

POSIX.1-2008, Technical Corrigendum 2, XCU/TC2-2008/0152 [886], XCU/TC2-2008/0153
[814], XCU/TC2-2008/0154 [886], and XCU/TC2-2008/0155 [707] are applied.

Issue 8
Austin Group Defect 1122 is applied, changing the description of NLSPATH. +

Austin Group Defect 1133 is applied, clarifying the −X option and adding a paragraph to the +
APPLICATION USAGE section. +

3260 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

110656

110657

110658

110659

110660

110661

110662

110663

110664

110665

110666

110667

110668

110669

110670

110671

110672

110673

110674

110675

110676

110677

110678

110679

110680

110681

110682

110683

110684

110685

110686

110687

110688

110689

110690

110691

110692

110693

110694

110695

110696

110697

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

Utilities pax

Austin Group Defect 1270 is applied, removing the −n option from the copy mode SYNOPSIS +
line. +

Austin Group Defect 1278 is applied, removing mention of the −n option in connection with +
write mode. +

Austin Group Defect 1330 is applied, removing obsolescent interfaces. +

Austin Group Defect 1331 is applied, changing ``st_atime’’ to ``st_atim’’ and ``st_mtime’’ to +
``st_mtim’’. +

Austin Group Defect 1379 is applied, changing the ENVIRONMENT VARIABLES section. +

Austin Group Defect 1380 is applied, changing text using the term ``link’’ in line with its +
updated definition and changing the description of the −u option. +

Austin Group Defect 1618 is applied, adding optional trailing 's' and 'S' characters to the +
option-argument of the −s option.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2023, IEEE and The Open Group. All rights reserved. 3261

110698

110699

110700

110701

110702

110703

110704

110705

110706

110707

110708

110709

IEEE P1003.1™-202x/D3, March 2023

This is an unapproved IEEE and The Open Group Standards Draft, subject to change.

	Frontmatter
	Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents
	Translations
	Official Statements
	Comments on Standards
	Laws and Regulations
	Copyrights
	Photocopies
	Updating of IEEE Standards Documents
	Errata
	Patents

	Contents
	XBD
	1 Introduction
	1.1 Scope
	1.2 Word Usage
	1.3 Conformance
	1.4 Normative References
	1.5 Change History
	1.6 Terminology
	1.7 Definitions and Concepts
	1.8 Portability
	1.8.1 Codes
	1.8.2 Margin Code Notation

	2 Conformance
	2.1 Implementation Conformance
	2.1.1 Requirements
	2.1.2 Documentation
	2.1.3 POSIX Conformance
	2.1.4 XSI Conformance
	2.1.5 Option Groups
	2.1.6 Options

	2.2 Application Conformance
	2.2.1 Strictly Conforming POSIX Application
	2.2.2 Conforming POSIX Application
	2.2.3 Conforming POSIX Application Using Extensions
	2.2.4 Strictly Conforming XSI Application
	2.2.5 Conforming XSI Application Using Extensions

	2.3 Language-Dependent Services for the C Programming Language
	2.4 Other Language-Related Specifications

	3 Definitions
	3.1 Abortive Release
	3.2 Absolute Pathname
	3.3 Access Mode
	3.4 Additional File Access Control Mechanism
	3.5 Address Space
	3.6 Advisory Information
	3.7 Affirmative Response
	3.8 Alert
	3.9 Alert Character (<alert>)
	3.10 Alias Name
	3.11 Alignment
	3.12 Alternate File Access Control Mechanism
	3.13 Alternate Signal Stack
	3.14 Ancillary Data
	3.15 Angle Brackets
	3.16 Anonymous Memory Object
	3.17 Apostrophe Character (<apostrophe>)
	3.18 Application
	3.19 Application Address
	3.20 Application Program Interface (API)
	3.21 Appropriate Privileges
	3.22 Argument
	3.23 Arm (a Timer)
	3.24 Asterisk Character (<asterisk>)
	3.25 Async-Cancel-Safe Function
	3.26 Asynchronous Events
	3.27 Asynchronous Input and Output
	3.28 Async-Signal-Safe Function
	3.29 Asynchronously-Generated Signal
	3.30 Asynchronous I/O Completion
	3.31 Asynchronous I/O Operation
	3.32 Atomic Operation
	3.33 Authentication
	3.34 Authorization
	3.35 Background Job
	3.36 Background Process
	3.37 Background Process Group
	3.38 Backquote Character
	3.39 Backslash Character (<backslash>)
	3.40 Backspace Character (<backspace>)
	3.41 Barrier
	3.42 Basename
	3.43 Basic Regular Expression (BRE)
	3.44 Bind
	3.45 Blank Character (<blank>)
	3.46 Blank Line
	3.47 Blocked Process (or Thread)
	3.48 Blocking
	3.49 Block-Mode Terminal
	3.50 Block Special File
	3.51 Braces
	3.52 Brackets
	3.53 Broadcast
	3.54 Built-In Utility (or Built-In)
	3.55 Byte
	3.56 Byte Input/Output Functions
	3.57 Carriage-Return Character (<carriage-return>)
	3.58 Character
	3.59 Character Array
	3.60 Character Class
	3.61 Character Set
	3.62 Character Special File
	3.63 Character String
	3.64 Child Process
	3.65 Circumflex Character (<circumflex>)
	3.66 Clock
	3.67 Clock Jump
	3.68 Clock Tick
	3.69 Code Block
	3.70 Coded Character Set
	3.71 Codeset
	3.72 Collating Element
	3.73 Collation
	3.74 Collation Sequence
	3.75 Column Position
	3.76 Command
	3.77 Command Language Interpreter
	3.78 Composite Graphic Symbol
	3.79 Condition Variable
	3.80 Connected Socket
	3.81 Connection
	3.82 Connection Mode
	3.83 Connectionless Mode
	3.84 Control Character
	3.85 Control Operator
	3.86 Controlling Process
	3.87 Controlling Terminal
	3.88 Conversion Descriptor
	3.89 Core Image
	3.90 CPU Time (Execution Time)
	3.91 CPU-Time Clock
	3.92 CPU-Time Timer
	3.93 Current Job
	3.94 Current Working Directory
	3.95 Cursor Position
	3.96 Datagram
	3.97 Data Race
	3.98 Data Segment
	3.99 Decimal-Point Character
	3.100 Declaration Utility
	3.101 Device
	3.102 Device ID
	3.103 Directory
	3.104 Directory Entry (or Hard Link)
	3.105 Directory Stream
	3.106 Disarm (a Timer)
	3.107 Display
	3.108 Display Line
	3.109 Dollar-Sign Character (<dollar-sign>)
	3.110 Dot
	3.111 Dot-Dot
	3.112 Dot-Po File
	3.113 Double-Quote Character
	3.114 Downshifting
	3.115 Driver
	3.116 Effective Group ID
	3.117 Effective User ID
	3.118 Eight-Bit Transparency
	3.119 Empty Directory
	3.120 Empty Line
	3.121 Empty String (or Null String)
	3.122 Empty Wide-Character String
	3.123 Encoding Rule
	3.124 Entire Regular Expression
	3.125 Epoch
	3.126 Equivalence Class
	3.127 Era
	3.128 Event Management
	3.129 Executable File
	3.130 Execute
	3.131 Execution Time
	3.132 Execution Time Monitoring
	3.133 Expand
	3.134 Extended Regular Expression (ERE)
	3.135 Extended Security Controls
	3.136 Feature Test Macro
	3.137 Field
	3.138 FIFO Special File (or FIFO)
	3.139 File
	3.140 File Description
	3.141 File Descriptor
	3.142 File Group Class
	3.143 File Lock
	3.144 File Mode
	3.145 File Mode Bits
	3.146 Filename
	3.147 Filename String
	3.148 File Offset
	3.149 File Other Class
	3.150 File Owner Class
	3.151 File Permission Bits
	3.152 File Serial Number
	3.153 File System
	3.154 File Type
	3.155 Filter
	3.156 First Open (of a File)
	3.157 Flow Control
	3.158 Foreground Job
	3.159 Foreground Process
	3.160 Foreground Process Group
	3.161 Foreground Process Group ID
	3.162 Form-Feed Character (<form-feed>)
	3.163 Graphic Character
	3.164 Group Database
	3.165 Group ID
	3.166 Group Name
	3.167 Hard Limit
	3.168 Hard Link
	3.169 Hole
	3.170 Home Directory
	3.171 Host Byte Order
	3.172 Incomplete Line
	3.173 Inf
	3.174 Interactive Device
	3.175 Interactive Shell
	3.176 Internationalization
	3.177 Interprocess Communication
	3.178 Intrinsic Utility
	3.179 Invoke
	3.180 Job
	3.181 Job Control
	3.182 Job ID
	3.183 Joinable Thread
	3.184 Last Close (of a File)
	3.185 Line
	3.186 Linger
	3.187 Link
	3.188 Link Count
	3.189 Live Process
	3.190 Live Thread
	3.191 Local Customs
	3.192 Local Interprocess Communication (Local IPC)
	3.193 Locale
	3.194 Localization
	3.195 Lock-Free Operation
	3.196 Login
	3.197 Login Name
	3.198 Map
	3.199 Matched
	3.200 Memory Mapped Files
	3.201 Memory Object
	3.202 Memory-Resident
	3.203 Message
	3.204 Message Catalog
	3.205 Message Catalog Descriptor
	3.206 Message Queue
	3.207 Messages Object
	3.208 Mode
	3.209 Monotonic Clock
	3.210 Mount Point
	3.211 Multi-Character Collating Element
	3.212 Multi-Threaded Library
	3.213 Multi-Threaded Process
	3.214 Multi-Threaded Program
	3.215 Mutex
	3.216 Name
	3.217 NaN (Not a Number)
	3.218 Native Language
	3.219 Negative
	3.220 Negative Response
	3.221 Network
	3.222 Network Address
	3.223 Network Byte Order
	3.224 Newline Character (<newline>)
	3.225 Nice Value
	3.226 Non-Blocking
	3.227 Non-Spacing Characters
	3.228 NUL
	3.229 Null Byte
	3.230 Null Pointer
	3.231 Null String
	3.232 Null Wide-Character Code
	3.233 Number-Sign Character (<number-sign>)
	3.234 Object File
	3.235 Octet
	3.236 OFD-Owned File Lock
	3.237 Offset Maximum
	3.238 Opaque Address
	3.239 Open File
	3.240 Open File Description
	3.241 Operand
	3.242 Operator
	3.243 Option
	3.244 Option-Argument
	3.245 Orientation
	3.246 Orphaned Process Group
	3.247 Page
	3.248 Page Size
	3.249 Parameter
	3.250 Parent Directory
	3.251 Parent Process
	3.252 Parent Process ID
	3.253 Pathname
	3.254 Pathname Component
	3.255 Path Prefix
	3.256 Pattern
	3.257 Period Character (<period>)
	3.258 Permissions
	3.259 Persistence
	3.260 Pipe
	3.261 Polling
	3.262 Portable Character Set
	3.263 Portable Filename
	3.264 Portable Filename Character Set
	3.265 Portable Messages Object Source File (or Dot-Po File)
	3.266 Positional Parameter
	3.267 Positive
	3.268 Preallocation
	3.269 Preempted Process (or Thread)
	3.270 Previous Job
	3.271 Printable Character
	3.272 Printable File
	3.273 Priority
	3.274 Priority Inversion
	3.275 Priority Scheduling
	3.276 Priority-Based Scheduling
	3.277 Privilege
	3.278 Process
	3.279 Process Group
	3.280 Process Group ID
	3.281 Process Group Leader
	3.282 Process Group Lifetime
	3.283 Process ID
	3.284 Process Lifetime
	3.285 Process Memory Locking
	3.286 Process Termination
	3.287 Process Virtual Time
	3.288 Process-Owned File Lock
	3.289 Process-To-Process Communication
	3.290 Program
	3.291 Protocol
	3.292 Pseudo-Terminal
	3.293 Radix Character (or Decimal-Point Character)
	3.294 Read-Only File System
	3.295 Read-Write Lock
	3.296 Real Group ID
	3.297 Real Time
	3.298 Realtime Signal Extension
	3.299 Real User ID
	3.300 Record
	3.301 Record Lock
	3.302 Redirection
	3.303 Redirection Operator
	3.304 Referenced Shared Memory Object
	3.305 Refresh
	3.306 Regular Built-In Utility (or Regular Built-In)
	3.307 Regular Expression
	3.308 Region
	3.309 Regular File
	3.310 Relative Pathname
	3.311 Relocatable File
	3.312 Relocation
	3.313 (Time) Resolution
	3.314 Robust Mutex
	3.315 Root Directory
	3.316 Runnable Process (or Thread)
	3.317 Running Process (or Thread)
	3.318 Saved Resource Limits
	3.319 Saved Set-Group-ID
	3.320 Saved Set-User-ID
	3.321 Scheduling
	3.322 Scheduling Allocation Domain
	3.323 Scheduling Contention Scope
	3.324 Scheduling Policy
	3.325 Screen
	3.326 Scroll
	3.327 Semaphore
	3.328 Session
	3.329 Session Leader
	3.330 Session Lifetime
	3.331 Shared Memory Object
	3.332 Shell
	3.333 Shell, the
	3.334 Shell Script
	3.335 Signal
	3.336 Signal Stack
	3.337 Single-Quote Character
	3.338 Single-Threaded Process
	3.339 Single-Threaded Program
	3.340 Slash Character (<slash>)
	3.341 Socket
	3.342 Socket Address
	3.343 Soft Limit
	3.344 Source Code
	3.345 Space Character (<space>)
	3.346 Sparse File
	3.347 Spawn
	3.348 Special Built-In Utility (or Special Built-In)
	3.349 Special Parameter
	3.350 Spin Lock
	3.351 Sporadic Server
	3.352 Standard Error
	3.353 Standard Input
	3.354 Standard Output
	3.355 Standard Utilities
	3.356 Stream
	3.357 String
	3.358 Subshell
	3.359 Successfully Transferred
	3.360 Supplementary Group ID
	3.361 Suspended Job
	3.362 Symbolic Constant
	3.363 Symbolic Link
	3.364 Synchronization Operation
	3.365 Synchronized Input and Output
	3.366 Synchronized I/O Completion
	3.367 Synchronized I/O Data Integrity Completion
	3.368 Synchronized I/O File Integrity Completion
	3.369 Synchronized I/O Operation
	3.370 Synchronous I/O Operation
	3.371 Synchronously-Generated Signal
	3.372 System
	3.373 System Boot
	3.374 System Clock
	3.375 System Console
	3.376 System Crash
	3.377 System Databases
	3.378 System Documentation
	3.379 System Process
	3.380 System Reboot
	3.381 System-Wide
	3.382 Tab Character (<tab>)
	3.383 Terminal (or Terminal Device)
	3.384 Text Column
	3.385 Text Domain
	3.386 Text File
	3.387 Thread
	3.388 Thread ID
	3.389 Thread Lifetime
	3.390 Thread List
	3.391 Thread Termination
	3.392 Thread-Safe
	3.393 Thread-Specific Data Key
	3.394 Tilde Character (<tilde>)
	3.395 Timeouts
	3.396 Timer
	3.397 Timer Overrun
	3.398 Token
	3.399 Typed Memory Name Space
	3.400 Typed Memory Object
	3.401 Typed Memory Pool
	3.402 Typed Memory Port
	3.403 Unbind
	3.404 Unit Data
	3.405 Upshifting
	3.406 User Database
	3.407 User ID
	3.408 User Name
	3.409 Utility
	3.410 Variable
	3.411 Vertical-Tab Character (<vertical-tab>)
	3.412 White Space
	3.413 White-Space Byte
	3.414 White-Space Character
	3.415 White-Space Wide Character
	3.416 Wide-Character Code (C Language)
	3.417 Wide-Character Input/Output Functions
	3.418 Wide-Character String
	3.419 Word
	3.420 Working Directory (or Current Working Directory)
	3.421 Worldwide Portability Interface
	3.422 Write
	3.423 XSI
	3.424 XSI-Conformant
	3.425 Zombie Process
	3.426 Zombie Thread
	3.427 Plus or Minus Zero

	4 General Concepts
	4.1 Case Insensitive Comparisons
	4.2 Concurrent Execution
	4.3 Default Initialization
	4.4 Directory Operations
	4.5 Directory Protection
	4.6 Extended Security Controls
	4.7 File Access Permissions
	4.8 File Hierarchy
	4.9 Filenames
	4.10 Filename Portability
	4.11 File System Cache
	4.12 File Times Update
	4.13 Host and Network Byte Orders
	4.14 Measurement of Execution Time
	4.15 Memory Ordering and Synchronization
	4.15.1 Memory Ordering
	4.15.2 Memory Synchronization

	4.16 Pathname Resolution
	4.17 Process ID Reuse
	4.18 Scheduling Policy
	4.19 Seconds Since the Epoch
	4.20 Semaphore
	4.21 Special Device Drivers
	4.22 Thread-Safety
	4.23 Treatment of Error Conditions for Mathematical Functions
	4.23.1 Domain Error
	4.23.2 Pole Error
	4.23.3 Range Error

	4.24 Treatment of NaN Arguments for the Mathematical Functions
	4.25 Utility
	4.26 Variable Assignment

	5 File Format Notation
	6 Character Set
	6.1 Portable Character Set
	6.2 Character Encoding
	6.3 C Language Wide-Character Codes
	6.4 Character Set Description File
	6.4.1 State-Dependent Character Encodings

	7 Locale
	7.1 General
	7.2 POSIX Locale
	7.3 Locale Definition
	7.3.1 LC_CTYPE
	7.3.2 LC_COLLATE
	7.3.3 LC_MONETARY
	7.3.4 LC_NUMERIC
	7.3.5 LC_TIME
	7.3.6 LC_MESSAGES

	7.4 Locale Definition Grammar
	7.4.1 Locale Lexical Conventions
	7.4.2 Locale Grammar

	8 Environment Variables
	8.1 Environment Variable Definition
	8.2 Internationalization Variables
	8.3 Other Environment Variables

	9 Regular Expressions
	9.1 Regular Expression Definitions
	9.2 Regular Expression General Requirements
	9.3 Basic Regular Expressions
	9.3.1 BREs Matching a Single Character or Collating Element
	9.3.2 BRE Ordinary Characters
	9.3.3 BRE Special Characters
	9.3.4 Periods in BREs
	9.3.5 RE Bracket Expression
	9.3.6 BREs Matching Multiple Characters
	9.3.7 BRE Precedence
	9.3.8 BRE Expression Anchoring

	9.4 Extended Regular Expressions
	9.4.1 EREs Matching a Single Character or Collating Element
	9.4.2 ERE Ordinary Characters
	9.4.3 ERE Special Characters
	9.4.4 Periods in EREs
	9.4.5 ERE Bracket Expression
	9.4.6 EREs Matching Multiple Characters
	9.4.7 ERE Alternation
	9.4.8 ERE Precedence
	9.4.9 ERE Expression Anchoring

	9.5 Regular Expression Grammar
	9.5.1 BRE/ERE Grammar Lexical Conventions
	9.5.2 RE and Bracket Expression Grammar
	9.5.3 ERE Grammar

	10 Directory Structure and Devices
	10.1 Directory Structure and Files
	10.2 Output Devices and Terminal Types

	11 General Terminal Interface
	11.1 Interface Characteristics
	11.1.1 Opening a Terminal Device File
	11.1.2 Process Groups
	11.1.3 The Controlling Terminal
	11.1.4 Terminal Access Control
	11.1.5 Input Processing and Reading Data
	11.1.6 Canonical Mode Input Processing
	11.1.7 Non-Canonical Mode Input Processing
	11.1.8 Writing Data and Output Processing
	11.1.9 Special Characters
	11.1.10 Modem Disconnect
	11.1.11 Closing a Terminal Device File

	11.2 Parameters that Can be Set
	11.2.1 The termios Structure
	11.2.2 Input Modes
	11.2.3 Output Modes
	11.2.4 Control Modes
	11.2.5 Local Modes
	11.2.6 Special Control Characters

	12 Utility Conventions
	12.1 Utility Argument Syntax
	12.2 Utility Syntax Guidelines

	13 Namespace and Future Directions
	14 Headers
	<aio.h>
	<arpa/inet.h>
	<assert.h>
	<complex.h>
	<cpio.h>
	<ctype.h>
	<devctl.h>
	<dirent.h>
	<dlfcn.h>
	<endian.h>
	<errno.h>
	<fcntl.h>
	<fenv.h>
	<float.h>
	<fmtmsg.h>
	<fnmatch.h>
	<ftw.h>
	<glob.h>
	<grp.h>
	<iconv.h>
	<inttypes.h>
	<iso646.h>
	<langinfo.h>
	<libgen.h>
	<libintl.h>
	<limits.h>
	<locale.h>
	<math.h>
	<monetary.h>
	<mqueue.h>
	<ndbm.h>
	<net/if.h>
	<netdb.h>
	<netinet/in.h>
	<netinet/tcp.h>
	<nl_types.h>
	<poll.h>
	<pthread.h>
	<pwd.h>
	<regex.h>
	<sched.h>
	<search.h>
	<semaphore.h>
	<setjmp.h>
	<signal.h>
	<spawn.h>
	<stdalign.h>
	<stdatomic.h>
	<stdarg.h>
	<stdbool.h>
	<stddef.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<stdnoreturn.h>
	<string.h>
	<strings.h>
	<sys/ipc.h>
	<sys/mman.h>
	<sys/msg.h>
	<sys/resource.h>
	<sys/select.h>
	<sys/sem.h>
	<sys/shm.h>
	<sys/socket.h>
	<sys/stat.h>
	<sys/statvfs.h>
	<sys/time.h>
	<sys/times.h>
	<sys/types.h>
	<sys/uio.h>
	<sys/un.h>
	<sys/utsname.h>
	<sys/wait.h>
	<syslog.h>
	<tar.h>
	<termios.h>
	<tgmath.h>
	<threads.h>
	<time.h>
	<uchar.h>
	<unistd.h>
	<utmpx.h>
	<wchar.h>
	<wctype.h>
	<wordexp.h>

	XSH
	1 Introduction
	1.1 Relationship to Other Formal Standards
	1.2 Format of Entries

	2 General Information
	2.1 Use and Implementation of Interfaces
	2.1.1 Use and Implementation of Functions
	2.1.2 Use and Implementation of Macros

	2.2 The Compilation Environment
	2.2.1 POSIX.1 Symbols
	2.2.2 The Name Space

	2.3 Error Numbers
	2.3.1 Additional Error Numbers

	2.4 Signal Concepts
	2.4.1 Signal Generation and Delivery
	2.4.2 Realtime Signal Generation and Delivery
	2.4.3 Signal Actions
	2.4.4 Signal Effects on Other Functions

	2.5 Standard I/O Streams
	2.5.1 Interaction of File Descriptors and Standard I/O Streams
	2.5.2 Stream Orientation and Encoding Rules

	2.6 File Descriptor Allocation
	2.7 XSI Interprocess Communication
	2.7.1 IPC General Description

	2.8 Realtime
	2.8.1 Realtime Signals
	2.8.2 Asynchronous I/O
	2.8.3 Memory Management
	2.8.4 Process Scheduling
	2.8.5 Clocks and Timers

	2.9 Threads
	2.9.1 Thread-Safety
	2.9.2 Thread IDs
	2.9.3 Thread Mutexes
	2.9.4 Thread Scheduling
	2.9.5 Thread Cancellation
	2.9.6 Thread Read-Write Locks
	2.9.7 Thread Interactions with File Operations
	2.9.8 Use of Application-Managed Thread Stacks
	2.9.9 Synchronization Object Copies and Alternative Mappings

	2.10 Sockets
	2.10.1 Address Families
	2.10.2 Addressing
	2.10.3 Protocols
	2.10.4 Routing
	2.10.5 Interfaces
	2.10.6 Socket Types
	2.10.7 Socket I/O Mode
	2.10.8 Socket Owner
	2.10.9 Socket Queue Limits
	2.10.10 Pending Error
	2.10.11 Socket Receive Queue
	2.10.12 Socket Out-of-Band Data State
	2.10.13 Connection Indication Queue
	2.10.14 Signals
	2.10.15 Asynchronous Errors
	2.10.16 Use of Options
	2.10.17 Use of Sockets for Local UNIX Connections
	2.10.18 Use of Sockets over Internet Protocols
	2.10.19 Use of Sockets over Internet Protocols Based on IPv4
	2.10.20 Use of Sockets over Internet Protocols Based on IPv6

	2.11 Data Types
	2.11.1 Defined Types
	2.11.2 The char Type

	2.12 Status Information

	3 System Interfaces
	CMPLX
	FD_CLR
	_Exit
	_Fork
	a64l
	abort
	abs
	accept
	access
	acos
	acosh
	acosl
	aio_cancel
	aio_error
	aio_fsync
	aio_read
	aio_return
	aio_suspend
	aio_write
	alarm
	aligned_alloc
	alphasort
	asctime
	asin
	asinh
	asinl
	asprintf
	assert
	at_quick_exit
	atan
	atan2
	atanf
	atanh
	atanl
	atexit
	atof
	atoi
	atol
	atomic_compare_exchange_strong
	atomic_exchange
	atomic_fetch_add
	atomic_flag_clear
	atomic_flag_test_and_set
	atomic_init
	atomic_is_lock_free
	atomic_load
	atomic_signal_fence
	atomic_store
	basename
	be16toh
	bind
	bindtextdomain
	bsearch
	btowc
	c16rtomb
	cabs
	cacos
	cacosh
	cacosl
	call_once
	calloc
	carg
	casin
	casinh
	casinl
	catan
	catanh
	catanl
	catclose
	catgets
	catopen
	cbrt
	ccos
	ccosh
	ccosl
	ceil
	cexp
	cfgetispeed
	cfgetospeed
	cfsetispeed
	cfsetospeed
	chdir
	chmod
	chown
	cimag
	clearerr
	clock
	clock_getcpuclockid
	clock_getres
	clock_nanosleep
	clock_settime
	clog
	close
	closedir
	closelog
	cnd_broadcast
	cnd_destroy
	cnd_timedwait
	confstr
	conj
	connect
	copysign
	cos
	cosh
	cosl
	cpow
	cproj
	creal
	creat
	crypt
	csin
	csinh
	csinl
	csqrt
	ctan
	ctanh
	ctanl
	ctermid
	ctime
	daylight
	dbm_clearerr
	dcgettext
	difftime
	dirfd
	dirname
	div
	dladdr
	dlclose
	dlerror
	dlopen
	dlsym
	dngettext
	dprintf
	drand48
	dup
	duplocale
	encrypt
	endgrent
	endhostent
	endnetent
	endprotoent
	endpwent
	endservent
	endutxent
	environ
	erand48
	erf
	erfc
	erff
	errno
	exec
	exit
	exp
	exp2
	expm1
	fabs
	faccessat
	fchdir
	fchmod
	fchmodat
	fchown
	fchownat
	fclose
	fcntl
	fdatasync
	fdim
	fdopen
	fdopendir
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fesetround
	fetestexcept
	feupdateenv
	fexecve
	fflush
	ffs
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	flockfile
	floor
	fma
	fmax
	fmemopen
	fmin
	fmod
	fmtmsg
	fnmatch
	fopen
	fork
	fpathconf
	fpclassify
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freeaddrinfo
	freelocale
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	fstatat
	fstatvfs
	fsync
	ftell
	ftok
	ftruncate
	ftrylockfile
	funlockfile
	futimens
	fwide
	fwprintf
	fwrite
	fwscanf
	gai_strerror
	getaddrinfo
	getc
	getc_unlocked
	getchar
	getchar_unlocked
	getcwd
	getdate
	getdelim
	getegid
	getentropy
	getenv
	geteuid
	getgid
	getgrent
	getgrgid
	getgrnam
	getgroups
	gethostent
	gethostid
	gethostname
	getline
	getlocalename_l
	getlogin
	getnameinfo
	getnetbyaddr
	getopt
	getpeername
	getpgid
	getpgrp
	getpid
	getppid
	getpriority
	getprotobyname
	getpwent
	getpwnam
	getpwuid
	getresgid
	getresuid
	getrlimit
	getrusage
	getservbyname
	getsid
	getsockname
	getsockopt
	getsubopt
	gettext
	getuid
	getutxent
	getwc
	getwchar
	glob
	gmtime
	grantpt
	hcreate
	htobe16
	htonl
	hypot
	iconv
	iconv_close
	iconv_open
	if_freenameindex
	if_indextoname
	if_nameindex
	if_nametoindex
	ilogb
	imaxabs
	imaxdiv
	in6addr_any
	inet_addr
	inet_ntop
	initstate
	insque
	isalnum
	isalpha
	isatty
	isblank
	iscntrl
	isdigit
	isfinite
	isgraph
	isgreater
	isinf
	isless
	islower
	isnan
	isnormal
	isprint
	ispunct
	isspace
	isunordered
	isupper
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	j0
	jrand48
	kill
	kill_dependency
	killpg
	l64a
	labs
	lchown
	lcong48
	ldexp
	ldiv
	le16toh
	lfind
	lgamma
	link
	lio_listio
	listen
	llabs
	lldiv
	llrint
	llround
	localeconv
	localtime
	lockf
	log
	log10
	log1p
	log2
	logb
	logf
	longjmp
	lrand48
	lrint
	lround
	lsearch
	lseek
	lstat
	malloc
	mblen
	mbrlen
	mbrtoc16
	mbrtowc
	mbsinit
	mbsrtowcs
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memmem
	memmove
	memset
	mkdir
	mkdtemp
	mkfifo
	mknod
	mkostemp
	mkstemp
	mktime
	mlock
	mlockall
	mmap
	modf
	mprotect
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mq_send
	mq_setattr
	mq_timedreceive
	mq_timedsend
	mq_unlink
	mrand48
	msgctl
	msgget
	msgrcv
	msgsnd
	msync
	mtx_destroy
	mtx_lock
	munlock
	munlockall
	munmap
	nan
	nanosleep
	nearbyint
	newlocale
	nextafter
	nftw
	ngettext
	nice
	nl_langinfo
	nrand48
	ntohl
	open
	open_memstream
	openat
	opendir
	openlog
	optarg
	pathconf
	pause
	pclose
	perror
	pipe
	poll
	popen
	posix_close
	posix_devctl
	posix_fadvise
	posix_fallocate
	posix_getdents
	posix_madvise
	posix_mem_offset
	posix_memalign
	posix_openpt
	posix_spawn
	posix_spawn_file_actions_addchdir
	posix_spawn_file_actions_addclose
	posix_spawn_file_actions_adddup2
	posix_spawn_file_actions_addfchdir
	posix_spawn_file_actions_addopen
	posix_spawn_file_actions_destroy
	posix_spawnattr_destroy
	posix_spawnattr_getflags
	posix_spawnattr_getpgroup
	posix_spawnattr_getschedparam
	posix_spawnattr_getschedpolicy
	posix_spawnattr_getsigdefault
	posix_spawnattr_getsigmask
	posix_spawnattr_init
	posix_spawnattr_setflags
	posix_spawnattr_setpgroup
	posix_spawnattr_setschedparam
	posix_spawnattr_setschedpolicy
	posix_spawnattr_setsigdefault
	posix_spawnattr_setsigmask
	posix_spawnp
	posix_typed_mem_get_info
	posix_typed_mem_open
	pow
	ppoll
	pread
	printf
	pselect
	psiginfo
	pthread_atfork
	pthread_attr_destroy
	pthread_attr_getdetachstate
	pthread_attr_getguardsize
	pthread_attr_getinheritsched
	pthread_attr_getschedparam
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstack
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setdetachstate
	pthread_attr_setguardsize
	pthread_attr_setinheritsched
	pthread_attr_setschedparam
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstack
	pthread_attr_setstacksize
	pthread_barrier_destroy
	pthread_barrier_wait
	pthread_barrierattr_destroy
	pthread_barrierattr_getpshared
	pthread_barrierattr_init
	pthread_barrierattr_setpshared
	pthread_cancel
	pthread_cleanup_pop
	pthread_cond_broadcast
	pthread_cond_clockwait
	pthread_cond_destroy
	pthread_cond_signal
	pthread_cond_timedwait
	pthread_condattr_destroy
	pthread_condattr_getclock
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setclock
	pthread_condattr_setpshared
	pthread_create
	pthread_detach
	pthread_equal
	pthread_exit
	pthread_getcpuclockid
	pthread_getschedparam
	pthread_getspecific
	pthread_join
	pthread_key_create
	pthread_key_delete
	pthread_kill
	pthread_mutex_clocklock
	pthread_mutex_consistent
	pthread_mutex_destroy
	pthread_mutex_getprioceiling
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_setprioceiling
	pthread_mutex_timedlock
	pthread_mutex_trylock
	pthread_mutexattr_destroy
	pthread_mutexattr_getprioceiling
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getpshared
	pthread_mutexattr_getrobust
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setprioceiling
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setpshared
	pthread_mutexattr_setrobust
	pthread_mutexattr_settype
	pthread_once
	pthread_rwlock_clockrdlock
	pthread_rwlock_clockwrlock
	pthread_rwlock_destroy
	pthread_rwlock_rdlock
	pthread_rwlock_timedrdlock
	pthread_rwlock_timedwrlock
	pthread_rwlock_tryrdlock
	pthread_rwlock_trywrlock
	pthread_rwlock_unlock
	pthread_rwlock_wrlock
	pthread_rwlockattr_destroy
	pthread_rwlockattr_getpshared
	pthread_rwlockattr_init
	pthread_rwlockattr_setpshared
	pthread_self
	pthread_setcancelstate
	pthread_setschedparam
	pthread_setschedprio
	pthread_setspecific
	pthread_sigmask
	pthread_spin_destroy
	pthread_spin_lock
	pthread_spin_unlock
	pthread_testcancel
	ptsname
	putc
	putc_unlocked
	putchar
	putchar_unlocked
	putenv
	puts
	pututxline
	putwc
	putwchar
	pwrite
	qsort
	quick_exit
	raise
	rand
	random
	read
	readdir
	readlink
	readv
	realloc
	realpath
	recv
	recvfrom
	recvmsg
	regcomp
	remainder
	remove
	remque
	remquo
	rename
	rewind
	rewinddir
	rint
	rmdir
	round
	scalbln
	scandir
	scanf
	sched_get_priority_max
	sched_getparam
	sched_getscheduler
	sched_rr_get_interval
	sched_setparam
	sched_setscheduler
	sched_yield
	secure_getenv
	seed48
	seekdir
	select
	sem_clockwait
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_timedwait
	sem_trywait
	sem_unlink
	sem_wait
	semctl
	semget
	semop
	send
	sendmsg
	sendto
	setbuf
	setegid
	setenv
	seteuid
	setgid
	setgrent
	sethostent
	setjmp
	setkey
	setlocale
	setlogmask
	setnetent
	setpgid
	setpriority
	setprotoent
	setpwent
	setregid
	setresgid
	setresuid
	setreuid
	setrlimit
	setservent
	setsid
	setsockopt
	setstate
	setuid
	setutxent
	setvbuf
	shm_open
	shm_unlink
	shmat
	shmctl
	shmdt
	shmget
	shutdown
	sig2str
	sigaction
	sigaddset
	sigaltstack
	sigdelset
	sigemptyset
	sigfillset
	sigismember
	siglongjmp
	signal
	signbit
	signgam
	sigpending
	sigprocmask
	sigqueue
	sigsetjmp
	sigsuspend
	sigtimedwait
	sigwait
	sigwaitinfo
	sin
	sinh
	sinl
	sleep
	snprintf
	sockatmark
	socket
	socketpair
	sprintf
	sqrt
	srand
	srand48
	srandom
	sscanf
	stat
	statvfs
	stdin
	stpcpy
	stpncpy
	str2sig
	strcasecmp
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strfmon
	strftime
	strlcat
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strndup
	strnlen
	strpbrk
	strptime
	strrchr
	strsignal
	strspn
	strstr
	strtod
	strtoimax
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoumax
	strxfrm
	swab
	swprintf
	swscanf
	symlink
	sync
	sysconf
	syslog
	system
	tan
	tanh
	tanl
	tcdrain
	tcflow
	tcflush
	tcgetattr
	tcgetpgrp
	tcgetsid
	tcgetwinsize
	tcsendbreak
	tcsetattr
	tcsetpgrp
	tcsetwinsize
	tdelete
	telldir
	textdomain
	tfind
	tgamma
	thrd_create
	thrd_current
	thrd_detach
	thrd_equal
	thrd_exit
	thrd_join
	thrd_sleep
	thrd_yield
	time
	timer_create
	timer_delete
	timer_getoverrun
	times
	timespec_get
	timezone
	tmpfile
	tmpnam
	tolower
	toupper
	towctrans
	towlower
	towupper
	trunc
	truncate
	truncf
	tsearch
	tss_create
	tss_delete
	tss_get
	ttyname
	twalk
	tzset
	umask
	uname
	ungetc
	ungetwc
	unlink
	unlockpt
	unsetenv
	uselocale
	utimensat
	va_arg
	vasprintf
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	vprintf
	vscanf
	vsnprintf
	vsscanf
	vswprintf
	vswscanf
	vwprintf
	vwscanf
	wait
	waitid
	waitpid
	wcpcpy
	wcpncpy
	wcrtomb
	wcscasecmp
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsdup
	wcsftime
	wcslcat
	wcslen
	wcsncasecmp
	wcsncat
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnrtombs
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstoimax
	wcstok
	wcstol
	wcstold
	wcstoll
	wcstombs
	wcstoul
	wcstoumax
	wcswidth
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wcwidth
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wordexp
	wprintf
	write
	writev
	wscanf
	y0

	XCU
	1 Introduction
	1.1 Relationship to Other Documents
	1.1.1 System Interfaces
	1.1.2 Concepts Derived from the ISO C Standard

	1.2 Utility Limits
	1.3 Grammar Conventions
	1.4 Utility Description Defaults
	1.5 Considerations for Utilities in Support of Files of Arbitrary Size
	1.6 Built-In Utilities
	1.7 Intrinsic Utilities

	2 Shell Command Language
	2.1 Shell Introduction
	2.2 Quoting
	2.2.1 Escape Character (Backslash)
	2.2.2 Single-Quotes
	2.2.3 Double-Quotes
	2.2.4 Dollar-Single-Quotes

	2.3 Token Recognition
	2.3.1 Alias Substitution

	2.4 Reserved Words
	2.5 Parameters and Variables
	2.5.1 Positional Parameters
	2.5.2 Special Parameters
	2.5.3 Shell Variables

	2.6 Word Expansions
	2.6.1 Tilde Expansion
	2.6.2 Parameter Expansion
	2.6.3 Command Substitution
	2.6.4 Arithmetic Expansion
	2.6.5 Field Splitting
	2.6.6 Pathname Expansion
	2.6.7 Quote Removal

	2.7 Redirection
	2.7.1 Redirecting Input
	2.7.2 Redirecting Output
	2.7.3 Appending Redirected Output
	2.7.4 Here-Document
	2.7.5 Duplicating an Input File Descriptor
	2.7.6 Duplicating an Output File Descriptor
	2.7.7 Open File Descriptors for Reading and Writing

	2.8 Exit Status and Errors
	2.8.1 Consequences of Shell Errors
	2.8.2 Exit Status for Commands

	2.9 Shell Commands
	2.9.1 Simple Commands
	2.9.2 Pipelines
	2.9.3 Lists
	2.9.4 Compound Commands
	2.9.5 Function Definition Command

	2.10 Shell Grammar
	2.10.1 Shell Grammar Lexical Conventions
	2.10.2 Shell Grammar Rules

	2.11 Job Control
	2.12 Signals and Error Handling
	2.13 Shell Execution Environment
	2.14 Pattern Matching Notation
	2.14.1 Patterns Matching a Single Character
	2.14.2 Patterns Matching Multiple Characters
	2.14.3 Patterns Used for Filename Expansion

	2.15 Special Built-In Utilities
	break
	colon
	continue
	dot
	eval
	exec
	exit
	export
	readonly
	return
	set
	shift
	times
	trap
	unset

	3 Utilities
	admin
	alias
	ar
	asa
	at
	awk
	basename
	batch
	bc
	bg
	c17
	cal
	cat
	cd
	cflow
	chgrp
	chmod
	chown
	cksum
	cmp
	comm
	command
	compress
	cp
	crontab
	csplit
	ctags
	cut
	cxref
	date
	dd
	delta
	df
	diff
	dirname
	du
	echo
	ed
	env
	ex
	expand
	expr
	false
	fc
	fg
	file
	find
	fold
	fuser
	gencat
	get
	getconf
	getopts
	gettext
	grep
	hash
	head
	iconv
	id
	ipcrm
	ipcs
	jobs
	join
	kill
	lex
	link
	ln
	locale
	localedef
	logger
	logname
	lp
	ls
	m4
	mailx
	make
	man
	mesg
	mkdir
	mkfifo
	more
	msgfmt
	mv
	newgrp
	ngettext
	nice
	nl
	nm
	nohup
	od
	paste
	patch
	pathchk
	pax
	pr
	printf
	prs
	ps
	pwd
	read
	readlink
	realpath
	renice
	rm
	rmdel
	rmdir
	sact
	sccs
	sed
	sh
	sleep
	sort
	split
	strings
	strip
	stty
	tabs
	tail
	talk
	tee
	test
	time
	timeout
	touch
	tput
	tr
	true
	tsort
	tty
	type
	ulimit
	umask
	unalias
	uname
	uncompress
	unexpand
	unget
	uniq
	unlink
	uucp
	uudecode
	uuencode
	uustat
	uux
	val
	vi
	wait
	wc
	what
	who
	write
	xargs
	xgettext
	yacc
	zcat

	XRAT
	A Rationale for Base Definitions
	A.1 Introduction
	A.1.1 Scope
	A.1.2 Word Usage
	A.1.3 Conformance
	A.1.4 Normative References
	A.1.5 Change History
	A.1.6 Terminology
	A.1.7 Definitions and Concepts
	A.1.8 Portability

	A.2 Conformance
	A.2.1 Implementation Conformance
	A.2.2 Application Conformance
	A.2.3 Language-Dependent Services for the C Programming Language
	A.2.4 Other Language-Related Specifications

	A.3 Definitions
	A.4 General Concepts
	A.4.1 Case Insensitive Comparisons
	A.4.2 Concurrent Execution
	A.4.3 Default Initialization
	A.4.4 Directory Operations
	A.4.5 Directory Protection
	A.4.6 Extended Security Controls
	A.4.7 File Access Permissions
	A.4.8 File Hierarchy
	A.4.9 Filenames
	A.4.10 Filename Portability
	A.4.11 File System Cache
	A.4.12 File Times Update
	A.4.13 Host and Network Byte Order
	A.4.14 Measurement of Execution Time
	A.4.15 Memory Ordering and Synchronization
	A.4.16 Pathname Resolution
	A.4.17 Process ID Reuse
	A.4.18 Scheduling Policy
	A.4.19 Seconds Since the Epoch
	A.4.20 Semaphore
	A.4.21 Special Device Drivers
	A.4.22 Thread-Safety
	A.4.23 Treatment of Error Conditions for Mathematical Functions
	A.4.24 Treatment of NaN Arguments for Mathematical Functions
	A.4.25 Utility
	A.4.26 Variable Assignment

	A.5 File Format Notation
	A.6 Character Set
	A.6.1 Portable Character Set
	A.6.2 Character Encoding
	A.6.3 C Language Wide-Character Codes
	A.6.4 Character Set Description File

	A.7 Locale
	A.7.1 General
	A.7.2 POSIX Locale
	A.7.3 Locale Definition
	A.7.4 Locale Definition Grammar
	A.7.5 Locale Definition Example

	A.8 Environment Variables
	A.8.1 Environment Variable Definition
	A.8.2 Internationalization Variables
	A.8.3 Other Environment Variables

	A.9 Regular Expressions
	A.9.1 Regular Expression Definitions
	A.9.2 Regular Expression General Requirements
	A.9.3 Basic Regular Expressions
	A.9.4 Extended Regular Expressions
	A.9.5 Regular Expression Grammar

	A.10 Directory Structure and Devices
	A.10.1 Directory Structure and Files
	A.10.2 Output Devices and Terminal Types

	A.11 General Terminal Interface
	A.11.1 Interface Characteristics
	A.11.2 Parameters that Can be Set

	A.12 Utility Conventions
	A.12.1 Utility Argument Syntax
	A.12.2 Utility Syntax Guidelines

	A.13 Namespace and Future Directions
	A.14 Headers
	A.14.1 Format of Entries
	A.14.2 Removed Headers in Issue 8

	B Rationale for System Interfaces
	B.1 Introduction
	B.1.1 Change History
	B.1.2 Relationship to Other Formal Standards
	B.1.3 Format of Entries

	B.2 General Information
	B.2.1 Use and Implementation of Interfaces
	B.2.2 The Compilation Environment
	B.2.3 Error Numbers
	B.2.4 Signal Concepts
	B.2.5 Standard I/O Streams
	B.2.6 File Descriptor Allocation
	B.2.7 XSI Interprocess Communication
	B.2.8 Realtime
	B.2.9 Threads
	B.2.10 Sockets
	B.2.11 Data Types
	B.2.12 Status Information

	B.3 System Interfaces
	B.3.1 System Interfaces Removed in this Version
	B.3.2 System Interfaces Removed in the Previous Version
	B.3.3 Examples for Spawn

	C Rationale for Shell and Utilities
	C.1 Introduction
	C.1.1 Change History
	C.1.2 Relationship to Other Documents
	C.1.3 Utility Limits
	C.1.4 Grammar Conventions
	C.1.5 Utility Description Defaults
	C.1.6 Considerations for Utilities in Support of Files of Arbitrary Size
	C.1.7 Built-In Utilities
	C.1.8 Intrinsic Utilities

	C.2 Shell Command Language
	C.2.1 Shell Introduction
	C.2.2 Quoting
	C.2.3 Token Recognition
	C.2.4 Reserved Words
	C.2.5 Parameters and Variables
	C.2.6 Word Expansions
	C.2.7 Redirection
	C.2.8 Exit Status and Errors
	C.2.9 Shell Commands
	C.2.10 Shell Grammar
	C.2.11 Job Control
	C.2.12 Signals and Error Handling
	C.2.13 Shell Execution Environment
	C.2.14 Pattern Matching Notation
	C.2.15 Special Built-In Utilities

	C.3 Utilities
	C.3.1 Utilities Removed in this Version
	C.3.2 Utilities Removed in the Previous Version
	C.3.3 Exclusion of Utilities

	D Portability Considerations (Informative)
	D.1 User Requirements
	D.1.1 Configuration Interrogation
	D.1.2 Process Management
	D.1.3 Access to Data
	D.1.4 Access to the Environment
	D.1.5 Access to Determinism and Performance Enhancements
	D.1.6 Operating System-Dependent Profile
	D.1.7 I/O Interaction
	D.1.8 Internationalization Interaction
	D.1.9 C-Language Extensions
	D.1.10 Command Language
	D.1.11 Interactive Facilities
	D.1.12 Accomplish Multiple Tasks Simultaneously
	D.1.13 Complex Data Manipulation
	D.1.14 File Hierarchy Manipulation
	D.1.15 Locale Configuration
	D.1.16 Inter-User Communication
	D.1.17 System Environment
	D.1.18 Printing
	D.1.19 Software Development

	D.2 Portability Capabilities
	D.2.1 Configuration Interrogation
	D.2.2 Process Management
	D.2.3 Access to Data
	D.2.4 Access to the Environment
	D.2.5 Bounded (Realtime) Response
	D.2.6 Operating System-Dependent Profile
	D.2.7 I/O Interaction
	D.2.8 Internationalization Interaction
	D.2.9 C-Language Extensions
	D.2.10 Command Language
	D.2.11 Interactive Facilities
	D.2.12 Accomplish Multiple Tasks Simultaneously
	D.2.13 Complex Data Manipulation
	D.2.14 File Hierarchy Manipulation
	D.2.15 Locale Configuration
	D.2.16 Inter-User Communication
	D.2.17 System Environment
	D.2.18 Printing
	D.2.19 Software Development
	D.2.20 Future Growth

	D.3 Profiling Considerations
	D.3.1 Configuration Options
	D.3.2 Configuration Options (Shell and Utilities)
	D.3.3 Configurable Limits
	D.3.4 Configuration Options (System Interfaces)
	D.3.5 Configurable Limits
	D.3.6 Optional Behavior

	E Subprofiling Considerations (Informative)
	E.1 Subprofiling Option Groups

	Index

