tech-kern archive
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Old Index]
Partial driver for HP DriveGuard
Hi.
I noticed the other day that one laptop of mine contains an accelerometer
designed to protect the hard drive. So I quickly hacked a driver for it. The
functionality is similar to that of aps(4), but the chip is fully
documented.
This is incomplete as I was unable to get the interrupt mode to work (the
test machine has no SMBus controller and I couldn't figure out how the chip
is wired). As a result the driver now just reports values to the envsys(4)
framework, and everything is passed through ACPICA, which is obviously
undesirable.
So if someone has too much free time and a HP laptop, feel free to continue
from where I left. After all, 3D accelerometers are cool -- I hacked also a
version that attached to wsmouse(9) and thus provided sort of a bigger "Wii"
:-).
Cheers,
Jukka.
- - -
/* $NetBSD: acel_acpi.c,v 0.1 2009/02/25 15:21:18 $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* An ACPI driver for Hewlett-Packard 3D DriveGuard accelerometer.
*
* The supported chipset is LIS3LV02DL from STMicroelectronics:
*
* http://www.st.com/stonline/products/literature/anp/12441.pdf
*
* (Obtained on Sat Apr 25 00:32:04 EEST 2009.)
*
* The chip is a three axes digital output linear accelerometer
* that is controllable through I2C / SPI serial interface. This
* implementation however supports only indirect connection through
* ACPI. Other chips from the same family, such as LIS3LV02DQ, may
* also work with the driver, provided that there is a suitable DSDT.
*
* The chip can generate wake-up, direction detection and free-fall
* interrupts. The latter could be used to evoke emergency action.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acel_acpi.c,v 0.1 2009/02/25 15:21:18 $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acel_acpireg.h>
#include <dev/sysmon/sysmonvar.h>
enum acel_sensors {
ACEL_SENSOR_X = 0,
ACEL_SENSOR_Y,
ACEL_SENSOR_Z,
ACEL_SENSOR_NUM
};
struct acel_reg {
uint8_t whoami;
uint8_t ctrl[3];
envsys_data_t xyz[ACEL_SENSOR_NUM];
int xyz_invert[ACEL_SENSOR_NUM];
};
struct acel_softc {
device_t sc_dev;
struct acpi_devnode *sc_node;
struct sysmon_envsys *sc_sme;
struct sysctllog *sc_log;
struct acel_reg sc_reg;
uint32_t sc_irq;
uint8_t sc_state;
};
static int acel_match(device_t, cfdata_t, void *);
static void acel_attach(device_t, device_t, void *);
#ifdef ACEL_IRQ
static ACPI_STATUS acel_get_irq(ACPI_RESOURCE *, void *);
#endif
static ACPI_STATUS acel_reg_init(ACPI_HANDLE, struct acel_reg *);
static ACPI_STATUS acel_reg_info(ACPI_HANDLE, struct acel_reg *);
static ACPI_STATUS acel_reg_xyz(ACPI_HANDLE, const int, int16_t *);
static ACPI_STATUS acel_reg_read(ACPI_HANDLE, ACPI_INTEGER, uint8_t *);
static ACPI_STATUS acel_reg_write(ACPI_HANDLE, ACPI_INTEGER, uint8_t);
static bool acel_set_state(struct acel_softc *, uint8_t);
static void acel_sensor_init(device_t);
static void acel_sensor_refresh(struct sysmon_envsys *,envsys_data_t *);
static void acel_sysctl_init(device_t);
static int acel_sysctl_state(SYSCTLFN_PROTO);
static int acel_sysctl_invert_xyz(SYSCTLFN_PROTO);
static bool acel_suspend(device_t PMF_FN_PROTO);
const char * const acel_acpi_ids[] = {
"HPQ0004",
NULL
};
CFATTACH_DECL_NEW(acel, sizeof(struct acel_softc),
acel_match, acel_attach, NULL, NULL);
static int
acel_match(device_t parent, cfdata_t match, void *aux)
{
struct acpi_attach_args *aa = aux;
if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
return 0;
return acpi_match_hid(aa->aa_node->ad_devinfo, acel_acpi_ids);
}
static void
acel_attach(device_t parent, device_t self, void *aux)
{
struct acel_softc *sc = device_private(self);
struct acpi_attach_args *aa = aux;
ACPI_STATUS rv;
sc->sc_irq = 0;
sc->sc_state = 0;
sc->sc_dev = self;
sc->sc_node = aa->aa_node;
#ifdef ACEL_IRQ
rv = AcpiWalkResources(sc->sc_node->ad_handle, "_CRS",
acel_get_irq, &sc->sc_irq);
if (ACPI_FAILURE(rv) || sc->sc_irq == 0) {
aprint_error_dev(self, "failed to parse _CRS: %s\n",
AcpiFormatException(rv));
return;
}
#endif
rv = acel_reg_init(sc->sc_node->ad_handle, &sc->sc_reg);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(self, "failed to initialize device: %s\n",
AcpiFormatException(rv));
return;
}
aprint_naive(": Accelerometer\n");
aprint_normal(": HP 3D DriveGuard (rev. 0x%X)\n", sc->sc_reg.whoami);
if (sc->sc_reg.whoami != LIS3LV02DL_ID)
aprint_error_dev(self, "warning: unsupported chip\n");
acel_sysctl_init(self);
if (pmf_device_register(sc->sc_dev, acel_suspend, NULL) != true)
aprint_error_dev(self, "failed to register power handler\n");
}
#ifdef ACEL_IRQ
/*
* XXX: The _CRS reports only a value for extended
* IRQ, and it is unclear how the chip is wired.
*/
static ACPI_STATUS
acel_get_irq(ACPI_RESOURCE *res, void *context)
{
uint32_t *irq;
if (res->Type != ACPI_RESOURCE_TYPE_EXTENDED_IRQ)
return AE_OK;
if (res->Data.ExtendedIrq.InterruptCount != 1)
return AE_BAD_VALUE;
if (res->Data.ExtendedIrq.ProducerConsumer != ACPI_CONSUMER)
return AE_BAD_DATA;
irq = (uint32_t *)context;
*irq = res->Data.ExtendedIrq.Interrupts[0];
return AE_OK;
}
#endif
static ACPI_STATUS
acel_reg_init(ACPI_HANDLE hdl, struct acel_reg *reg)
{
ACPI_STATUS rv;
uint8_t val;
rv = AcpiEvaluateObject(hdl, "_INI", NULL, NULL);
if (ACPI_FAILURE(rv))
return rv;
/*
* Since the "_INI" is practically a
* black box, it is better to verify
* the control registers manually.
*/
if (acel_reg_info(hdl, reg) != AE_OK)
return AE_ERROR;
val = reg->ctrl[0];
if ((reg->ctrl[0] & CTRL1_Xen) == 0)
val |= CTRL1_Xen;
if ((reg->ctrl[0] & CTRL1_Yen) == 0)
val |= CTRL1_Yen;
if ((reg->ctrl[0] & CTRL1_Zen) == 0)
val |= CTRL1_Zen;
/*
* We will power off the device by default.
*/
if ((reg->ctrl[0] & (CTRL1_PD0 | CTRL1_PD1)) != 0) {
val &= ~CTRL1_PD0;
val &= ~CTRL1_PD1;
}
if (val != reg->ctrl[0]) {
rv = acel_reg_write(hdl, CTRL_REG1, val);
if (ACPI_FAILURE(rv))
return rv;
}
val = reg->ctrl[1];
if ((reg->ctrl[1] & CTRL2_BDU) == 0)
val |= CTRL2_BDU;
if ((reg->ctrl[1] & CTRL2_BLE) != 0)
val &= ~CTRL2_BLE;
if ((reg->ctrl[1] & CTRL2_DAS) != 0)
val &= ~CTRL2_DAS;
/*
* Given that we use sysmon_envsys(9),
* there is no need for the data-ready
* pin. Besides, polling is likely a
* good idea since there seems to be
* some constant motion in the sensors.
*/
if ((reg->ctrl[1] & CTRL2_DRDY) != 0)
val &= ~CTRL2_DRDY;
/*
* XXX: Set this for the interrupt mode.
*/
if ((reg->ctrl[1] & CTRL2_IEN) != 0)
val &= ~CTRL2_IEN;
if (val != reg->ctrl[1]) {
rv = acel_reg_write(hdl, CTRL_REG2, val);
if (ACPI_FAILURE(rv))
return rv;
}
/*
* Clear possible interrupt setups from
* the direction-detection register and
* from the free-fall-wake-up register.
*/
(void)acel_reg_write(hdl, DD_CFG, 0x00);
(void)acel_reg_write(hdl, FF_WU_CFG, 0x00);
(void)acel_reg_info(hdl, reg);
return AE_OK;
}
static ACPI_STATUS
acel_reg_info(ACPI_HANDLE hdl, struct acel_reg *reg)
{
int i;
if (acel_reg_read(hdl, WHO_AM_I, ®->whoami) != AE_OK)
return AE_ERROR;
for (i = 0; i < ACEL_SENSOR_NUM; ++i) {
if (acel_reg_read(hdl, CTRL_REG1 + i, ®->ctrl[i]) != AE_OK)
return AE_ERROR;
}
return AE_OK;
}
static ACPI_STATUS
acel_reg_xyz(ACPI_HANDLE hdl, const int xyz, int16_t *out)
{
ACPI_INTEGER reg[2];
ACPI_STATUS rv[2];
uint8_t hi, lo;
switch (xyz) {
case ACEL_SENSOR_X:
reg[0] = OUTX_L;
reg[1] = OUTX_H;
break;
case ACEL_SENSOR_Y:
reg[0] = OUTY_L;
reg[1] = OUTY_H;
break;
case ACEL_SENSOR_Z:
reg[0] = OUTZ_L;
reg[1] = OUTZ_H;
break;
default:
return AE_BAD_PARAMETER;
}
rv[0] = acel_reg_read(hdl, reg[0], &lo);
rv[1] = acel_reg_read(hdl, reg[1], &hi);
if (ACPI_FAILURE(rv[0]) || ACPI_FAILURE(rv[1]))
return AE_ERROR;
/*
* These registers are read in "12 bit right
* justified mode", meaning that the four
* most significant bits are replaced with
* the value of bit 12. Note the signed type.
*/
hi = (hi & 0x10) ? hi | 0xE0 : hi & ~0xE0;
*out = (hi << 8) | lo;
return AE_OK;
}
static ACPI_STATUS
acel_reg_read(ACPI_HANDLE hdl, ACPI_INTEGER reg, uint8_t *out)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj, val;
ACPI_BUFFER buf;
ACPI_STATUS rv;
obj.Type = ACPI_TYPE_INTEGER;
obj.Integer.Value = reg;
buf.Pointer = &val;
buf.Length = sizeof(val);
arg.Count = 1;
arg.Pointer = &obj;
rv = AcpiEvaluateObjectTyped(hdl, "ALRD", &arg, &buf,
ACPI_TYPE_INTEGER);
if (val.Integer.Value > UINT8_MAX)
return AE_LIMIT;
if (ACPI_SUCCESS(rv))
*out = val.Integer.Value;
return rv;
}
static ACPI_STATUS
acel_reg_write(ACPI_HANDLE hdl, ACPI_INTEGER reg, uint8_t val)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj[2];
obj[0].Type = obj[1].Type = ACPI_TYPE_INTEGER;
obj[0].Integer.Value = reg;
obj[1].Integer.Value = val;
arg.Count = 2;
arg.Pointer = obj;
return AcpiEvaluateObject(hdl, "ALWR", &arg, NULL);
}
static bool
acel_set_state(struct acel_softc *sc, uint8_t state)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj;
int8_t val;
if (sc->sc_state == state)
return true;
val = sc->sc_reg.ctrl[0];
val = (state != 0) ? val | CTRL1_PD0 : val & ~CTRL1_PD0;
if (acel_reg_write(sc->sc_node->ad_handle, CTRL_REG1, val) != AE_OK)
return false;
sc->sc_reg.ctrl[0] = val;
if (state != 0)
acel_sensor_init(sc->sc_dev);
else {
KASSERT(sc->sc_sme != NULL);
(void)sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
}
obj.Type = ACPI_TYPE_INTEGER;
obj.Integer.Value = state;
arg.Count = 1;
arg.Pointer = &obj;
(void)AcpiEvaluateObject(sc->sc_node->ad_handle, "ALED", &arg, NULL);
return true;
}
static void
acel_sensor_init(device_t self)
{
struct acel_softc *sc = device_private(self);
const char zyx[ACEL_SENSOR_NUM] = { 'x', 'y', 'z' };
int i, rv;
sc->sc_sme = sysmon_envsys_create();
for (i = 0; i < ACEL_SENSOR_NUM; ++i) {
sc->sc_reg.xyz[i].units = ENVSYS_INTEGER;
sc->sc_reg.xyz[i].state = ENVSYS_SINVALID;
(void)snprintf(sc->sc_reg.xyz[i].desc,
ENVSYS_DESCLEN, "%c-axis", zyx[i]);
rv = sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_reg.xyz[i]);
if (rv != 0) {
aprint_error_dev(self, "failed to attach '%s' to "
"sysmon (error %d)\n", sc->sc_reg.xyz[i].desc, rv);
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_refresh = acel_sensor_refresh;
rv = sysmon_envsys_register(sc->sc_sme);
if (rv != 0) {
aprint_error_dev(self, "failed to register with sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
}
}
/*
* While there would be plenty more information to gather from
* the chip, each poll cycle will already now make six calls to the
* abyss of ACPI(CA). This is hopelessly slow way to read registers.
*/
static void
acel_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct acel_softc *sc = sme->sme_cookie;
ACPI_STATUS rv;
int16_t i, val;
KASSERT(sc->sc_state != 0);
for (i = val = 0; i < ACEL_SENSOR_NUM; ++i) {
rv = acel_reg_xyz(sc->sc_node->ad_handle, i, &val);
if (ACPI_SUCCESS(rv)) {
if (sc->sc_reg.xyz_invert[i] != 0)
val = -val;
sc->sc_reg.xyz[i].value_cur = val;
sc->sc_reg.xyz[i].state = ENVSYS_SVALID;
continue;
}
if (sc->sc_reg.xyz[i].state != ENVSYS_SINVALID) {
aprint_error_dev(sc->sc_dev,
"failed to read state of '%s': %s\n",
sc->sc_reg.xyz[i].desc, AcpiFormatException(rv));
}
sc->sc_reg.xyz[i].state = ENVSYS_SINVALID;
}
}
static void
acel_sysctl_init(device_t self)
{
struct acel_softc *sc = device_private(self);
const struct sysctlnode *node;
int root, rv;
sc->sc_log = NULL;
rv = sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(self),
SYSCTL_DESCR("HP 3D DriveGuard controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
root = node->sysctl_num;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enables or disables the device"),
acel_sysctl_state, 0, sc, 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_x",
SYSCTL_DESCR("Inverts X-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[0], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_y",
SYSCTL_DESCR("Inverts Y-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[1], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_z",
SYSCTL_DESCR("Inverts Z-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[2], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
return;
fail:
if (sc->sc_log != NULL)
sysctl_teardown(&sc->sc_log);
aprint_error_dev(sc->sc_dev,
"failed to initialize sysctl (error %d)\n", rv);
}
static int
acel_sysctl_state(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct acel_softc *sc;
int error, t;
sc = (struct acel_softc *)rnode->sysctl_data;
t = sc->sc_state;
node = *rnode;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t != 0 && t != 1)
return EINVAL;
if (acel_set_state(sc, t) != true) {
aprint_error_dev(sc->sc_dev, "failed to %s device\n",
(t != 0) ? "enable" : "disable");
return ENXIO;
}
sc->sc_state = t;
return 0;
}
static int
acel_sysctl_invert_xyz(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int error, t;
node = *rnode;
t = *(int *)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t != 0 && t != 1)
return EINVAL;
*(int *)rnode->sysctl_data = t;
return 0;
}
static bool
acel_suspend(device_t dv PMF_FN_ARGS)
{
struct acel_softc *sc = device_private(dv);
return acel_set_state(sc, 0);
}
---
/* $NetBSD: acel_acpireg.h,v 0.1 2009/02/25 15:21:18 $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef ACEL_ACPIREG_H
#define ACEL_ACPIREG_H
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acel_acpireg.h,v 0.1 2009/02/25 15:21:18 $");
/*
* Partial datasheet for LIS3LV02D.
*/
#define LIS3LV02DL_ID 0x3A
enum lis3_reg {
WHO_AM_I = 0x0F, /* r */
OFFSET_X = 0x16, /* rw */
OFFSET_Y = 0x17, /* rw */
OFFSET_Z = 0x18, /* rw */
GAIN_X = 0x19, /* rw */
GAIN_Y = 0x1A, /* rw */
GAIN_Z = 0x1B, /* rw */
CTRL_REG1 = 0x20, /* rw */
CTRL_REG2 = 0x21, /* rw */
CTRL_REG3 = 0x22, /* rw */
HP_FILTER_RESET = 0x23, /* r */
STATUS_REG = 0x27, /* rw */
OUTX_L = 0x28, /* r */
OUTX_H = 0x29, /* r */
OUTY_L = 0x2A, /* r */
OUTY_H = 0x2B, /* r */
OUTZ_L = 0x2C, /* r */
OUTZ_H = 0x2D, /* r */
FF_WU_CFG = 0x30, /* r */
FF_WU_SRC = 0x31, /* rw */
FF_WU_ACK = 0x32, /* r */
FF_WU_THS_L = 0x34, /* rw */
FF_WU_THS_H = 0x35, /* rw */
FF_WU_DURATION = 0x36, /* rw */
DD_CFG = 0x38, /* rw */
DD_SRC = 0x39, /* rw */
DD_ACK = 0x3A, /* r */
DD_THSI_L = 0x3C, /* rw */
DD_THSI_H = 0x3D, /* rw */
DD_THSE_L = 0x3E, /* rw */
DD_THSE_H = 0x3F /* rw */
};
enum lis_ctrl1 {
CTRL1_Xen = (1 << 0), /* X-axis enable */
CTRL1_Yen = (1 << 1), /* Y-axis enable */
CTRL1_Zen = (1 << 2), /* Z-axis enable */
CTRL1_ST = (1 << 3), /* Self test enable */
CTRL1_DF0 = (1 << 4), /* Decimation factor control */
CTRL1_DF1 = (1 << 5), /* Decimation factor control */
CTRL1_PD0 = (1 << 6), /* Power down control */
CTRL1_PD1 = (1 << 7) /* Power down control */
};
enum lis3_ctrl2 {
CTRL2_DAS = (1 << 0), /* Data alignment selection */
CTRL2_SIM = (1 << 1), /* SPI serial interface mode */
CTRL2_DRDY = (1 << 2), /* Enable data-ready generation */
CTRL2_IEN = (1 << 3), /* Enable interrupt mode */
CTRL2_BOOT = (1 << 4), /* Reboot memory contents */
CTRL2_BLE = (1 << 5), /* Endian mode */
CTRL2_BDU = (1 << 6), /* Block data update */
CTRL2_FS = (1 << 7) /* Full scale selection */
};
enum lis_ctrl3 {
CTRL3_CFS0 = (1 << 0), /* High-pass filter cut-off frequency */
CTRL3_CFS1 = (1 << 1), /* High-pass filter cut-off frequency */
CTRL3_FDS = (1 << 4), /* Filtered data selection */
CTRL3_HPFF = (1 << 5), /* High pass filter for free-fall */
CTRL3_HPDD = (1 << 6), /* High pass filter for DD */
CTRL3_ECK = (1 << 7) /* External clock */
};
#endif /* def ACEL_ACPIREG_H */
/* $NetBSD: acel_acpi.c,v 0.1 2009/02/25 15:21:18 $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* An ACPI driver for Hewlett-Packard 3D DriveGuard accelerometer.
*
* The supported chipset is LIS3LV02DL from STMicroelectronics:
*
* http://www.st.com/stonline/products/literature/anp/12441.pdf
*
* (Obtained on Sat Apr 25 00:32:04 EEST 2009.)
*
* The chip is a three axes digital output linear accelerometer
* that is controllable through I2C / SPI serial interface. This
* implementation however supports only indirect connection through
* ACPI. Other chips from the same family, such as LIS3LV02DQ, may
* also work with the driver, provided that there is a suitable DSDT.
*
* The chip can generate wake-up, direction detection and free-fall
* interrupts. The latter could be used to evoke emergency action.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acel_acpi.c,v 0.1 2009/02/25 15:21:18 $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acel_acpireg.h>
#include <dev/sysmon/sysmonvar.h>
enum acel_sensors {
ACEL_SENSOR_X = 0,
ACEL_SENSOR_Y,
ACEL_SENSOR_Z,
ACEL_SENSOR_NUM
};
struct acel_reg {
uint8_t whoami;
uint8_t ctrl[3];
envsys_data_t xyz[ACEL_SENSOR_NUM];
int xyz_invert[ACEL_SENSOR_NUM];
};
struct acel_softc {
device_t sc_dev;
struct acpi_devnode *sc_node;
struct sysmon_envsys *sc_sme;
struct sysctllog *sc_log;
struct acel_reg sc_reg;
uint32_t sc_irq;
uint8_t sc_state;
};
static int acel_match(device_t, cfdata_t, void *);
static void acel_attach(device_t, device_t, void *);
#ifdef ACEL_IRQ
static ACPI_STATUS acel_get_irq(ACPI_RESOURCE *, void *);
#endif
static ACPI_STATUS acel_reg_init(ACPI_HANDLE, struct acel_reg *);
static ACPI_STATUS acel_reg_info(ACPI_HANDLE, struct acel_reg *);
static ACPI_STATUS acel_reg_xyz(ACPI_HANDLE, const int, int16_t *);
static ACPI_STATUS acel_reg_read(ACPI_HANDLE, ACPI_INTEGER, uint8_t *);
static ACPI_STATUS acel_reg_write(ACPI_HANDLE, ACPI_INTEGER, uint8_t);
static bool acel_set_state(struct acel_softc *, uint8_t);
static void acel_sensor_init(device_t);
static void acel_sensor_refresh(struct sysmon_envsys *,envsys_data_t *);
static void acel_sysctl_init(device_t);
static int acel_sysctl_state(SYSCTLFN_PROTO);
static int acel_sysctl_invert_xyz(SYSCTLFN_PROTO);
static bool acel_suspend(device_t PMF_FN_PROTO);
const char * const acel_acpi_ids[] = {
"HPQ0004",
NULL
};
CFATTACH_DECL_NEW(acel, sizeof(struct acel_softc),
acel_match, acel_attach, NULL, NULL);
static int
acel_match(device_t parent, cfdata_t match, void *aux)
{
struct acpi_attach_args *aa = aux;
if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
return 0;
return acpi_match_hid(aa->aa_node->ad_devinfo, acel_acpi_ids);
}
static void
acel_attach(device_t parent, device_t self, void *aux)
{
struct acel_softc *sc = device_private(self);
struct acpi_attach_args *aa = aux;
ACPI_STATUS rv;
sc->sc_irq = 0;
sc->sc_state = 0;
sc->sc_dev = self;
sc->sc_node = aa->aa_node;
#ifdef ACEL_IRQ
rv = AcpiWalkResources(sc->sc_node->ad_handle, "_CRS",
acel_get_irq, &sc->sc_irq);
if (ACPI_FAILURE(rv) || sc->sc_irq == 0) {
aprint_error_dev(self, "failed to parse _CRS: %s\n",
AcpiFormatException(rv));
return;
}
#endif
rv = acel_reg_init(sc->sc_node->ad_handle, &sc->sc_reg);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(self, "failed to initialize device: %s\n",
AcpiFormatException(rv));
return;
}
aprint_naive(": Accelerometer\n");
aprint_normal(": HP 3D DriveGuard (rev. 0x%X)\n", sc->sc_reg.whoami);
if (sc->sc_reg.whoami != LIS3LV02DL_ID)
aprint_error_dev(self, "warning: unsupported chip\n");
acel_sysctl_init(self);
if (pmf_device_register(sc->sc_dev, acel_suspend, NULL) != true)
aprint_error_dev(self, "failed to register power handler\n");
}
#ifdef ACEL_IRQ
/*
* XXX: The _CRS reports only a value for extended
* IRQ, and it is unclear how the chip is wired.
*/
static ACPI_STATUS
acel_get_irq(ACPI_RESOURCE *res, void *context)
{
uint32_t *irq;
if (res->Type != ACPI_RESOURCE_TYPE_EXTENDED_IRQ)
return AE_OK;
if (res->Data.ExtendedIrq.InterruptCount != 1)
return AE_BAD_VALUE;
if (res->Data.ExtendedIrq.ProducerConsumer != ACPI_CONSUMER)
return AE_BAD_DATA;
irq = (uint32_t *)context;
*irq = res->Data.ExtendedIrq.Interrupts[0];
return AE_OK;
}
#endif
static ACPI_STATUS
acel_reg_init(ACPI_HANDLE hdl, struct acel_reg *reg)
{
ACPI_STATUS rv;
uint8_t val;
rv = AcpiEvaluateObject(hdl, "_INI", NULL, NULL);
if (ACPI_FAILURE(rv))
return rv;
/*
* Since the "_INI" is practically a
* black box, it is better to verify
* the control registers manually.
*/
if (acel_reg_info(hdl, reg) != AE_OK)
return AE_ERROR;
val = reg->ctrl[0];
if ((reg->ctrl[0] & CTRL1_Xen) == 0)
val |= CTRL1_Xen;
if ((reg->ctrl[0] & CTRL1_Yen) == 0)
val |= CTRL1_Yen;
if ((reg->ctrl[0] & CTRL1_Zen) == 0)
val |= CTRL1_Zen;
/*
* We will power off the device by default.
*/
if ((reg->ctrl[0] & (CTRL1_PD0 | CTRL1_PD1)) != 0) {
val &= ~CTRL1_PD0;
val &= ~CTRL1_PD1;
}
if (val != reg->ctrl[0]) {
rv = acel_reg_write(hdl, CTRL_REG1, val);
if (ACPI_FAILURE(rv))
return rv;
}
val = reg->ctrl[1];
if ((reg->ctrl[1] & CTRL2_BDU) == 0)
val |= CTRL2_BDU;
if ((reg->ctrl[1] & CTRL2_BLE) != 0)
val &= ~CTRL2_BLE;
if ((reg->ctrl[1] & CTRL2_DAS) != 0)
val &= ~CTRL2_DAS;
/*
* Given that we use sysmon_envsys(9),
* there is no need for the data-ready
* pin. Besides, polling is likely a
* good idea since there seems to be
* some constant motion in the sensors.
*/
if ((reg->ctrl[1] & CTRL2_DRDY) != 0)
val &= ~CTRL2_DRDY;
/*
* XXX: Set this for the interrupt mode.
*/
if ((reg->ctrl[1] & CTRL2_IEN) != 0)
val &= ~CTRL2_IEN;
if (val != reg->ctrl[1]) {
rv = acel_reg_write(hdl, CTRL_REG2, val);
if (ACPI_FAILURE(rv))
return rv;
}
/*
* Clear possible interrupt setups from
* the direction-detection register and
* from the free-fall-wake-up register.
*/
(void)acel_reg_write(hdl, DD_CFG, 0x00);
(void)acel_reg_write(hdl, FF_WU_CFG, 0x00);
(void)acel_reg_info(hdl, reg);
return AE_OK;
}
static ACPI_STATUS
acel_reg_info(ACPI_HANDLE hdl, struct acel_reg *reg)
{
int i;
if (acel_reg_read(hdl, WHO_AM_I, ®->whoami) != AE_OK)
return AE_ERROR;
for (i = 0; i < ACEL_SENSOR_NUM; ++i) {
if (acel_reg_read(hdl, CTRL_REG1 + i, ®->ctrl[i]) != AE_OK)
return AE_ERROR;
}
return AE_OK;
}
static ACPI_STATUS
acel_reg_xyz(ACPI_HANDLE hdl, const int xyz, int16_t *out)
{
ACPI_INTEGER reg[2];
ACPI_STATUS rv[2];
uint8_t hi, lo;
switch (xyz) {
case ACEL_SENSOR_X:
reg[0] = OUTX_L;
reg[1] = OUTX_H;
break;
case ACEL_SENSOR_Y:
reg[0] = OUTY_L;
reg[1] = OUTY_H;
break;
case ACEL_SENSOR_Z:
reg[0] = OUTZ_L;
reg[1] = OUTZ_H;
break;
default:
return AE_BAD_PARAMETER;
}
rv[0] = acel_reg_read(hdl, reg[0], &lo);
rv[1] = acel_reg_read(hdl, reg[1], &hi);
if (ACPI_FAILURE(rv[0]) || ACPI_FAILURE(rv[1]))
return AE_ERROR;
/*
* These registers are read in "12 bit right
* justified mode", meaning that the four
* most significant bits are replaced with
* the value of bit 12. Note the signed type.
*/
hi = (hi & 0x10) ? hi | 0xE0 : hi & ~0xE0;
*out = (hi << 8) | lo;
return AE_OK;
}
static ACPI_STATUS
acel_reg_read(ACPI_HANDLE hdl, ACPI_INTEGER reg, uint8_t *out)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj, val;
ACPI_BUFFER buf;
ACPI_STATUS rv;
obj.Type = ACPI_TYPE_INTEGER;
obj.Integer.Value = reg;
buf.Pointer = &val;
buf.Length = sizeof(val);
arg.Count = 1;
arg.Pointer = &obj;
rv = AcpiEvaluateObjectTyped(hdl, "ALRD", &arg, &buf,
ACPI_TYPE_INTEGER);
if (val.Integer.Value > UINT8_MAX)
return AE_LIMIT;
if (ACPI_SUCCESS(rv))
*out = val.Integer.Value;
return rv;
}
static ACPI_STATUS
acel_reg_write(ACPI_HANDLE hdl, ACPI_INTEGER reg, uint8_t val)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj[2];
obj[0].Type = obj[1].Type = ACPI_TYPE_INTEGER;
obj[0].Integer.Value = reg;
obj[1].Integer.Value = val;
arg.Count = 2;
arg.Pointer = obj;
return AcpiEvaluateObject(hdl, "ALWR", &arg, NULL);
}
static bool
acel_set_state(struct acel_softc *sc, uint8_t state)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj;
int8_t val;
if (sc->sc_state == state)
return true;
val = sc->sc_reg.ctrl[0];
val = (state != 0) ? val | CTRL1_PD0 : val & ~CTRL1_PD0;
if (acel_reg_write(sc->sc_node->ad_handle, CTRL_REG1, val) != AE_OK)
return false;
sc->sc_reg.ctrl[0] = val;
if (state != 0)
acel_sensor_init(sc->sc_dev);
else {
KASSERT(sc->sc_sme != NULL);
(void)sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
}
obj.Type = ACPI_TYPE_INTEGER;
obj.Integer.Value = state;
arg.Count = 1;
arg.Pointer = &obj;
(void)AcpiEvaluateObject(sc->sc_node->ad_handle, "ALED", &arg, NULL);
return true;
}
static void
acel_sensor_init(device_t self)
{
struct acel_softc *sc = device_private(self);
const char zyx[ACEL_SENSOR_NUM] = { 'x', 'y', 'z' };
int i, rv;
sc->sc_sme = sysmon_envsys_create();
for (i = 0; i < ACEL_SENSOR_NUM; ++i) {
sc->sc_reg.xyz[i].units = ENVSYS_INTEGER;
sc->sc_reg.xyz[i].state = ENVSYS_SINVALID;
(void)snprintf(sc->sc_reg.xyz[i].desc,
ENVSYS_DESCLEN, "%c-axis", zyx[i]);
rv = sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_reg.xyz[i]);
if (rv != 0) {
aprint_error_dev(self, "failed to attach '%s' to "
"sysmon (error %d)\n", sc->sc_reg.xyz[i].desc, rv);
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_refresh = acel_sensor_refresh;
rv = sysmon_envsys_register(sc->sc_sme);
if (rv != 0) {
aprint_error_dev(self, "failed to register with sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
}
}
/*
* While there would be plenty more information to gather from
* the chip, each poll cycle will already now make six calls to the
* abyss of ACPI(CA). This is hopelessly slow way to read registers.
*/
static void
acel_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct acel_softc *sc = sme->sme_cookie;
ACPI_STATUS rv;
int16_t i, val;
KASSERT(sc->sc_state != 0);
for (i = val = 0; i < ACEL_SENSOR_NUM; ++i) {
rv = acel_reg_xyz(sc->sc_node->ad_handle, i, &val);
if (ACPI_SUCCESS(rv)) {
if (sc->sc_reg.xyz_invert[i] != 0)
val = -val;
sc->sc_reg.xyz[i].value_cur = val;
sc->sc_reg.xyz[i].state = ENVSYS_SVALID;
continue;
}
if (sc->sc_reg.xyz[i].state != ENVSYS_SINVALID) {
aprint_error_dev(sc->sc_dev,
"failed to read state of '%s': %s\n",
sc->sc_reg.xyz[i].desc, AcpiFormatException(rv));
}
sc->sc_reg.xyz[i].state = ENVSYS_SINVALID;
}
}
static void
acel_sysctl_init(device_t self)
{
struct acel_softc *sc = device_private(self);
const struct sysctlnode *node;
int root, rv;
sc->sc_log = NULL;
rv = sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(self),
SYSCTL_DESCR("HP 3D DriveGuard controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
root = node->sysctl_num;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "enable",
SYSCTL_DESCR("Enables or disables the device"),
acel_sysctl_state, 0, sc, 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_x",
SYSCTL_DESCR("Inverts X-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[0], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_y",
SYSCTL_DESCR("Inverts Y-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[1], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&sc->sc_log, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "invert_z",
SYSCTL_DESCR("Inverts Z-axis"),
acel_sysctl_invert_xyz, 0, &sc->sc_reg.xyz_invert[2], 0,
CTL_HW, root, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
return;
fail:
if (sc->sc_log != NULL)
sysctl_teardown(&sc->sc_log);
aprint_error_dev(sc->sc_dev,
"failed to initialize sysctl (error %d)\n", rv);
}
static int
acel_sysctl_state(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct acel_softc *sc;
int error, t;
sc = (struct acel_softc *)rnode->sysctl_data;
t = sc->sc_state;
node = *rnode;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t != 0 && t != 1)
return EINVAL;
if (acel_set_state(sc, t) != true) {
aprint_error_dev(sc->sc_dev, "failed to %s device\n",
(t != 0) ? "enable" : "disable");
return ENXIO;
}
sc->sc_state = t;
return 0;
}
static int
acel_sysctl_invert_xyz(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int error, t;
node = *rnode;
t = *(int *)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t != 0 && t != 1)
return EINVAL;
*(int *)rnode->sysctl_data = t;
return 0;
}
static bool
acel_suspend(device_t dv PMF_FN_ARGS)
{
struct acel_softc *sc = device_private(dv);
return acel_set_state(sc, 0);
}
/* $NetBSD: acel_acpireg.h,v 0.1 2009/02/25 15:21:18 $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef ACEL_ACPIREG_H
#define ACEL_ACPIREG_H
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acel_acpireg.h,v 0.1 2009/02/25 15:21:18 $");
/*
* Partial datasheet for LIS3LV02D.
*/
#define LIS3LV02DL_ID 0x3A
enum lis3_reg {
WHO_AM_I = 0x0F, /* r */
OFFSET_X = 0x16, /* rw */
OFFSET_Y = 0x17, /* rw */
OFFSET_Z = 0x18, /* rw */
GAIN_X = 0x19, /* rw */
GAIN_Y = 0x1A, /* rw */
GAIN_Z = 0x1B, /* rw */
CTRL_REG1 = 0x20, /* rw */
CTRL_REG2 = 0x21, /* rw */
CTRL_REG3 = 0x22, /* rw */
HP_FILTER_RESET = 0x23, /* r */
STATUS_REG = 0x27, /* rw */
OUTX_L = 0x28, /* r */
OUTX_H = 0x29, /* r */
OUTY_L = 0x2A, /* r */
OUTY_H = 0x2B, /* r */
OUTZ_L = 0x2C, /* r */
OUTZ_H = 0x2D, /* r */
FF_WU_CFG = 0x30, /* r */
FF_WU_SRC = 0x31, /* rw */
FF_WU_ACK = 0x32, /* r */
FF_WU_THS_L = 0x34, /* rw */
FF_WU_THS_H = 0x35, /* rw */
FF_WU_DURATION = 0x36, /* rw */
DD_CFG = 0x38, /* rw */
DD_SRC = 0x39, /* rw */
DD_ACK = 0x3A, /* r */
DD_THSI_L = 0x3C, /* rw */
DD_THSI_H = 0x3D, /* rw */
DD_THSE_L = 0x3E, /* rw */
DD_THSE_H = 0x3F /* rw */
};
enum lis_ctrl1 {
CTRL1_Xen = (1 << 0), /* X-axis enable */
CTRL1_Yen = (1 << 1), /* Y-axis enable */
CTRL1_Zen = (1 << 2), /* Z-axis enable */
CTRL1_ST = (1 << 3), /* Self test enable */
CTRL1_DF0 = (1 << 4), /* Decimation factor control */
CTRL1_DF1 = (1 << 5), /* Decimation factor control */
CTRL1_PD0 = (1 << 6), /* Power down control */
CTRL1_PD1 = (1 << 7) /* Power down control */
};
enum lis3_ctrl2 {
CTRL2_DAS = (1 << 0), /* Data alignment selection */
CTRL2_SIM = (1 << 1), /* SPI serial interface mode */
CTRL2_DRDY = (1 << 2), /* Enable data-ready generation */
CTRL2_IEN = (1 << 3), /* Enable interrupt mode */
CTRL2_BOOT = (1 << 4), /* Reboot memory contents */
CTRL2_BLE = (1 << 5), /* Endian mode */
CTRL2_BDU = (1 << 6), /* Block data update */
CTRL2_FS = (1 << 7) /* Full scale selection */
};
enum lis_ctrl3 {
CTRL3_CFS0 = (1 << 0), /* High-pass filter cut-off frequency */
CTRL3_CFS1 = (1 << 1), /* High-pass filter cut-off frequency */
CTRL3_FDS = (1 << 4), /* Filtered data selection */
CTRL3_HPFF = (1 << 5), /* High pass filter for free-fall */
CTRL3_HPDD = (1 << 6), /* High pass filter for DD */
CTRL3_ECK = (1 << 7) /* External clock */
};
#endif /* def ACEL_ACPIREG_H */
Home |
Main Index |
Thread Index |
Old Index