Subject: Re: kern/29262
To: None <cube@netbsd.org, gnats-admin@netbsd.org, netbsd-bugs@netbsd.org>
From: Jens Kessmeier <j.kessmeier@teles.de>
List: netbsd-bugs
Date: 03/07/2005 16:14:01
The following reply was made to PR kern/29262; it has been noted by GNATS.

From: Jens Kessmeier <j.kessmeier@teles.de>
To: "'gnats-bugs@gnats.netbsd.org'" <gnats-bugs@netbsd.org>
Cc: 
Subject: Re: kern/29262
Date: Mon, 7 Mar 2005 17:10:15 +0100 

 Hello, i am still alive :-).
 
 Here are my new times and the test script. Behind is the modified
 kern_ksyms.c file.
 Let's go on, i will spend my time on PR29400.
 
 Have a good time.
 
 Mon Mar  7 15:11:42 CET 2005
 Loading tlsload
 Module loaded as ID 0
 Mon Mar  7 15:11:43 CET 2005
 Loading streams
 Module loaded as ID 1
 Mon Mar  7 15:11:44 CET 2005
 Loading tlstrc
 Module loaded as ID 2
 Mon Mar  7 15:11:47 CET 2005
 Loading tlspir
 Module loaded as ID 3
 Mon Mar  7 15:11:49 CET 2005
 Loading tlsp8
 Module loaded as ID 4
 Mon Mar  7 15:11:51 CET 2005
 Loading tlssw1
 Module loaded as ID 5
 Mon Mar  7 15:11:53 CET 2005
 Loading tlssw1vx
 Module loaded as ID 6
 Mon Mar  7 15:11:55 CET 2005
 Loading tlsmtn
 Module loaded as ID 7
 Mon Mar  7 15:11:57 CET 2005
 Loading tlstnx
 Module loaded as ID 8
 Mon Mar  7 15:11:59 CET 2005
 Loading tlssw23
 Module loaded as ID 9
 Mon Mar  7 15:12:02 CET 2005
 Loading tlstoner
 Module loaded as ID 10
 Mon Mar  7 15:12:04 CET 2005
 End 
 
 
 #!/bin/sh
 
 KDRV=/usr/isdn/kdrv
 
 date; echo "Loading tlsload"
 modload -s $KDRV/tlsload.o
 date; echo "Loading streams"
 modload -s $KDRV/streams.o
 date; echo "Loading tlstrc"
 modload -s $KDRV/tlstrc.o
 date; echo "Loading tlspir"
 modload -s $KDRV/tlspir.o
 date; echo "Loading tlsp8"
 modload -s $KDRV/tlsp8.o
 date; echo "Loading tlssw1"
 modload -s $KDRV/tlssw1.o
 date; echo "Loading tlssw1vx"
 modload -s $KDRV/tlssw1vx.o
 date; echo "Loading tlsmtn"
 modload -s $KDRV/tlsmtn.o
 date; echo "Loading tlstnx"
 modload -s $KDRV/tlstnx.o
 date; echo "Loading tlssw23"
 modload -s $KDRV/tlssw23.o
 date; echo "Loading tlstoner"
 modload -s $KDRV/tlstoner.o
 date; echo "End "
 
 
 /*	$NetBSD: kern_ksyms.c,v 1.21 2004/02/19 03:42:01 matt Exp $	*/
 /*
  * Copyright (c) 2001, 2003 Anders Magnusson (ragge@ludd.luth.se).
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. The name of the author may not be used to endorse or promote products
  *    derived from this software without specific prior written permission
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 /*
  * Code to deal with in-kernel symbol table management + /dev/ksyms.
  *
  * For each loaded module the symbol table info is kept track of by a
  * struct, placed in a circular list. The first entry is the kernel
  * symbol table.
  */
 
 /*
  * TODO:
  *	Change the ugly way of adding new symbols (comes with linker)
  *	Add kernel locking stuff.
  *	(Ev) add support for poll.
  *	(Ev) fix support for mmap.
  *
  *	Export ksyms internal logic for use in post-mortem debuggers?
  *	  Need to move struct symtab to ksyms.h for that.
  */
 
 #include <sys/cdefs.h>
 __KERNEL_RCSID(0, "$NetBSD: kern_ksyms.c,v 1.21 2004/02/19 03:42:01 matt Exp
 $");
 
 #ifdef _KERNEL
 #include "opt_ddb.h"
 #include "opt_ddbparam.h"	/* for SYMTAB_SPACE */
 #endif
 
 #include <sys/param.h>
 #include <sys/errno.h>
 #include <sys/queue.h>
 #include <sys/exec.h>
 #include <sys/systm.h>
 #include <sys/conf.h>
 #include <sys/device.h>
 #include <sys/malloc.h>
 #include <sys/proc.h>
 
 #include <machine/elf_machdep.h> /* XXX */
 #define ELFSIZE ARCH_ELFSIZE
 
 #include <sys/exec_elf.h>
 #include <sys/ksyms.h>
 
 #include <lib/libkern/libkern.h>
 
 #ifdef DDB
 #include <ddb/db_output.h>
 #endif
 
 #include "ksyms.h"
 
 static int ksymsinited = 0;
 
 #if NKSYMS
 static void ksyms_hdr_init(caddr_t hdraddr);
 static void ksyms_sizes_calc(void);
 static int ksyms_isopen;
 static int ksyms_maxlen;
 #endif
 
 #ifdef KSYMS_DEBUG
 #define	FOLLOW_CALLS		1
 #define	FOLLOW_MORE_CALLS	2
 #define	FOLLOW_DEVKSYMS		4
 static int ksyms_debug;
 #endif
 
 #if NKSYMS
 dev_type_open(ksymsopen);
 dev_type_close(ksymsclose);
 dev_type_read(ksymsread);
 dev_type_write(ksymswrite);
 dev_type_ioctl(ksymsioctl);
 
 const struct cdevsw ksyms_cdevsw = {
 	ksymsopen, ksymsclose, ksymsread, ksymswrite, ksymsioctl,
 	nullstop, notty, nopoll, nommap, nullkqfilter, DV_DULL
 };
 #endif
 
 #ifdef SYMTAB_SPACE
 #define		SYMTAB_FILLER	"|This is the symbol table!"
 
 char		db_symtab[SYMTAB_SPACE] = SYMTAB_FILLER;
 int		db_symtabsize = SYMTAB_SPACE;
 #endif
 
 /*
  * Store the different symbol tables in a double-linked list.
  */
 #ifndef KESSI
 struct ptree2_tree;
 #endif
 
 struct symtab {
 	CIRCLEQ_ENTRY(symtab) sd_queue;
 	const char *sd_name;	/* Name of this table */
 	Elf_Sym *sd_symstart;	/* Address of symbol table */
 	caddr_t sd_strstart;	/* Adderss of corresponding string table */
 #ifndef KESSI
 	struct ptree2_tree *sd_ptree2;
 #endif
 	int sd_usroffset;	/* Real address for userspace */
 	int sd_symsize;		/* Size in bytes of symbol table */
 	int sd_strsize;		/* Size of string table */
 	int *sd_symnmoff;	/* Used when calculating the name offset */
 };
 
 static CIRCLEQ_HEAD(, symtab) symtab_queue =
     CIRCLEQ_HEAD_INITIALIZER(symtab_queue);
 
 static struct symtab kernel_symtab;
 
 #define	USE_PTREE
 #ifdef USE_PTREE
 /*
  * Patricia-tree-based lookup structure for the in-kernel global symbols.
  * Based on a design by Mikael Sundstrom, msm@sm.luth.se.
  */
 struct ptree {
 	int16_t bitno;
 	int16_t lr[2];
 } *symb;
 static int16_t baseidx;
 static int treex = 1;
 
 #define	P_BIT(key, bit) ((key[bit >> 3] >> (bit & 7)) & 1)
 #define	STRING(idx) kernel_symtab.sd_symstart[idx].st_name + \
 			kernel_symtab.sd_strstart
 
 /*
  * Walk down the tree until a terminal node is found.
  */
 static int
 symbol_traverse(char *key)
 {
 	int16_t nb, rbit = baseidx;
 
 	while (rbit > 0) {
 		nb = symb[rbit].bitno;
 		rbit = symb[rbit].lr[P_BIT(key, nb)];
 	}
 	return -rbit;
 }
 
 static int
 ptree_add(char *key, int val)
 {
 	int idx;
 	int nix, cix, bit, rbit, sb, lastrbit, svbit = 0, ix;
 	char *m, *k;
 
 	if (baseidx == 0) {
 		baseidx = -val;
 		return 0; /* First element */
 	}
 
 	/* Get string to match against */
 	idx = symbol_traverse(key);
 
 	/* Find first mismatching bit */
 	m = STRING(idx);
 	k = key;
 	if (strcmp(m, k) == 0)
 		return 1;
 
 	for (cix = 0; *m && *k && *m == *k; m++, k++, cix += 8)
 		;
 	ix = ffs((int)*m ^ (int)*k) - 1;
 	cix += ix;
 
 	/* Create new node */
 	nix = treex++;
 	bit = P_BIT(key, cix);
 	symb[nix].bitno = cix;
 	symb[nix].lr[bit] = -val;
 
 	/* Find where to insert node */
 	rbit = baseidx;
 	lastrbit = 0;
 	for (;;) {
 		if (rbit < 0)
 			break;
 		sb = symb[rbit].bitno;
 		if (sb > cix)
 			break;
 		if (sb == cix)
 			printf("symb[rbit].bitno == cix!!!\n");
 		lastrbit = rbit;
 		svbit = P_BIT(key, sb);
 		rbit = symb[rbit].lr[svbit];
 	}
 
 	/* Do the actual insertion */
 	if (lastrbit == 0) {
 		/* first element */
 		symb[nix].lr[!bit] = baseidx;
 		baseidx = nix;
 	} else {
 		symb[nix].lr[!bit] = rbit;
 		symb[lastrbit].lr[svbit] = nix;
 	}
 	return 0;
 }
 
 static int
 ptree_find(char *key)
 {
 	int idx;
 
 	if (baseidx == 0)
 		return 0;
 	idx = symbol_traverse(key);
 
 	if (strcmp(key, STRING(idx)) == 0)
 		return idx;
 	return 0;
 }
 
 static void
 ptree_gen(char *off, struct symtab *tab)
 {
 	Elf_Sym *sym;
 	int i, nsym;
 
 	if (off != NULL)
 		symb = (struct ptree *)ALIGN(off);
 	else
 		symb = malloc((tab->sd_symsize/sizeof(Elf_Sym)) *
 		    sizeof(struct ptree), M_DEVBUF, M_WAITOK);
 	symb--; /* sym index won't be 0 */
 
 	sym = tab->sd_symstart;
 	if ((nsym = tab->sd_symsize/sizeof(Elf_Sym)) > INT16_MAX) {
 		printf("Too many symbols for tree, skipping %d symbols\n",
 		    nsym-INT16_MAX);
 		nsym = INT16_MAX;
 	}
 	for (i = 1; i < nsym; i++) {
 		if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL)
 			continue;
 		ptree_add(tab->sd_strstart+sym[i].st_name, i);
 	}
 }
 #endif
 
 #ifndef KESSI
 
 #define __STATIC__	static
 
 struct ptree2_node {
 	int16_t bitno;
 	int16_t lr[2];
 };
 
 typedef void *(*ptree2_item_func_t)(void *, int);
 
 struct ptree2_tree {
 	int16_t			 baseidx;
 	int			 treex;
 	struct ptree2_node	*node;
 	void			*vab_tab;
 	ptree2_item_func_t	 item_func;
 };
 
 #define PTREE2_ITEM(x,y)	(((x)->item_func)((x)->vab_tab, y))
 
 __STATIC__ int
 ptree2_pbit(
 	void	*vp,
 	int	 len,
 	int	 bit	)
 {
 	unsigned char	*key 	= vp;
 	int	 	i	= bit >> 3;
 
 	if(i < len) {
 		return((key[i] >> (bit & 7)) & 1);
 	}
 	return(0);
 }
 
 
 /*
  * Walk down the tree until a terminal node is found.
  */
 __STATIC__ int
 ptree2_traverse(
 	struct	ptree2_tree	*p,
 	void			*key,
 	int			 len	)
 {
 	int16_t nb, rbit = p->baseidx;
 
 	while (rbit > 0) {
 		int	p_bit;
 
 		nb 	= p->node[rbit].bitno;
 		p_bit	= ptree2_pbit(key, len, nb);
 		rbit 	= p->node[rbit].lr[p_bit];
 
 	}
 	return(-rbit);
 }
 
 __STATIC__ int
 ptree2_add(
 	struct	ptree2_tree	*p,
 	void			*key,
 	int			 len,
 	int	 		 val	)
 {
 	int	idx;
 	int 	nix, cix, bit, rbit, sb, lastrbit, svbit = 0, ix;
 	char 	*m, *k;
 
 	if (p->baseidx == 0) {
 		p->baseidx = -val;
 		return(0); /* First element */
 	}
 
 	/* Get string to match against */
 
 	idx = ptree2_traverse(p, key, len);
 
 	/* Find first mismatching bit */
 	m = PTREE2_ITEM(p, idx);
 	k = key;
 
 	if (strcmp(m, k) == 0) {
 		return(1);
 	}
 
 	for (cix = 0; *m && *k && *m == *k; m++, k++, cix += 8);
 
 	ix	= ffs((int)*m ^ (int)*k) - 1;
 	cix	+= ix;
 
 	/* Create new node */
 
 	nix = p->treex++;
 	bit = ptree2_pbit(key, len, cix);
 
 	p->node[nix].bitno	= cix;
 	p->node[nix].lr[bit]	= -val;
 
 	/* Find where to insert node */
 
 	rbit	 = p->baseidx;
 	lastrbit = 0;
 
 	for (;;) {
 		if (rbit < 0) {
 			break;
 		}
 		sb = p->node[rbit].bitno;
 
 		if (sb > cix) {
 			break;
 		}
 		if (sb == cix) {
 			printf("node[rbit].bitno == cix!!!\n");
 		}
 		lastrbit	= rbit;
 		svbit		= ptree2_pbit(key, len, sb);
 		rbit		= p->node[rbit].lr[svbit];
 	}
 
 	/* Do the actual insertion */
 
 	if (lastrbit == 0) {
 		/* first element */
 		p->node[nix].lr[!bit]		= p->baseidx;
 		p->baseidx			= nix;
 	} else {
 		p->node[nix].lr[!bit]	 	= rbit;
 		p->node[lastrbit].lr[svbit]	= nix;
 	}
 	return(0);
 }
 
 __STATIC__ int
 ptree2_find(
 	struct	ptree2_tree	*p,
 	void			*key,
 	int			 len	)
 {
 	int idx;
 
 	if (p->baseidx == 0) {
 		return(0);
 	}
 	idx = ptree2_traverse(p, key, len);
 
 	if (strcmp(key, PTREE2_ITEM(p, idx)) == 0) {
 		return(idx);
 	}
 	return(0);
 }
 
 __STATIC__ void
 ptree2_free(
 	struct ptree2_tree	*p	)
 {
 	p->node++;
 
 	free(p->node, M_DEVBUF);
 	free(p, M_DEVBUF);
 }
 
 __STATIC__ struct ptree2_tree *
 ptree2_alloc(
 	void			*vab_tab,
 	int	 	 	 vab_max,
 	ptree2_item_func_t	 item_func	)
 {
 	struct	ptree2_tree	*p;
 	int			 l;
 
 	if(vab_max > INT16_MAX) {
 		return(NULL);
 	}
 	if((p = malloc(sizeof(*p), M_DEVBUF, M_WAITOK)) == NULL) {
 		return(NULL);
 	}
 	l = (vab_max + 1) * sizeof(*(p->node));
 
 	if((p->node = malloc(l, M_DEVBUF, M_WAITOK)) == NULL) {
 		free(p, M_DEVBUF);
 		return(NULL);
 	}
 	p->baseidx	= 0;
 	p->treex	= 1;
 	p->vab_tab	= vab_tab;
 	p->item_func	= item_func;
 
 	p->node--; /* sym index won't be 0 */
 
 	return(p);
 }
 
 __STATIC__ void *
 ptree2_item(
 	void	*vp,
 	int	 idx	)
 {
 	struct symtab	*st = vp;
 
 	return((st->sd_symstart[idx-1].st_name - st->sd_usroffset) +
 st->sd_strstart);
 }
 
 #endif
 
 /*
  * Finds a certain symbol name in a certain symbol table.
  */
 #ifdef KESSI
 
 static Elf_Sym *
 #ifdef KESSI
 findsym(char *name, struct symtab *table, int userreq)
 #else
 findsym(char *name, struct symtab *table)
 #endif
 {
 	Elf_Sym *start = table->sd_symstart;
 	int i, sz = table->sd_symsize/sizeof(Elf_Sym);
 	char *np;
 #ifdef KESSI
 	caddr_t realstart = table->sd_strstart - (userreq ? 0 :
 table->sd_usroffset);
 #else
 	caddr_t realstart = table->sd_strstart - table->sd_usroffset;
 #endif
 
 #ifdef USE_PTREE
 	if (table == &kernel_symtab && (i = ptree_find(name)) != 0)
 		return &start[i];
 #endif
 
 	for (i = 0; i < sz; i++) {
 		np = realstart + start[i].st_name;
 		if (name[0] == np[0] && name[1] == np[1] &&
 		    strcmp(name, np) == 0)
 			return &start[i];
 	}
 	return NULL;
 }
 
 #else
 
 static Elf_Sym *
 findsym(char *name, struct symtab *table)
 {
 	Elf_Sym *start = table->sd_symstart;
 	int	i;
 
 #ifdef USE_PTREE
 	if (table == &kernel_symtab) {
 		if((i = ptree_find(name)) != 0) {
 			return(&start[i]);
 		}
 		return(NULL);
 	}
 #endif
 	if((i = ptree2_find(table->sd_ptree2, name, strlen(name))) != 0) {
 		return(&start[i-1]);
 	}
 	return(NULL);
 }
 
 #endif
 
 /*
  * The "attach" is in reality done in ksyms_init().
  */
 void ksymsattach(int);
 void
 ksymsattach(int arg)
 {
 
 #ifdef USE_PTREE
 	if (baseidx == 0)
 		ptree_gen(0, &kernel_symtab);
 #endif
 
 }
 
 /*
  * Add a symbol table named name.
  * This is intended for use when the kernel loader enters the table.
  */
 static void
 addsymtab(const char *name, Elf_Ehdr *ehdr, struct symtab *tab)
 {
 	caddr_t start = (caddr_t)ehdr;
 	caddr_t send;
 	Elf_Shdr *shdr;
 	Elf_Sym *sym, *nsym;
 	int i, j, n, g;
 	char *str;
 
 	/* Find the symbol table and the corresponding string table. */
 	shdr = (Elf_Shdr *)(start + ehdr->e_shoff);
 	for (i = 1; i < ehdr->e_shnum; i++) {
 		if (shdr[i].sh_type != SHT_SYMTAB)
 			continue;
 		if (shdr[i].sh_offset == 0)
 			continue;
 		tab->sd_symstart = (Elf_Sym *)(start + shdr[i].sh_offset);
 		tab->sd_symsize = shdr[i].sh_size;
 		j = shdr[i].sh_link;
 		if (shdr[j].sh_offset == 0)
 			continue; /* Can this happen? */
 		tab->sd_strstart = start + shdr[j].sh_offset;
 		tab->sd_strsize = shdr[j].sh_size;
 		break;
 	}
 	tab->sd_name = name;
 	send = tab->sd_strstart + tab->sd_strsize;
 
 #ifdef KSYMS_DEBUG
 	printf("start %p sym %p symsz %d str %p strsz %d send %p\n",
 	    start, tab->sd_symstart, tab->sd_symsize, 
 	    tab->sd_strstart, tab->sd_strsize, send);
 #endif
 
 	/*
 	 * Pack symbol table by removing all file name references
 	 * and overwrite the elf header.
 	 */
 	sym = tab->sd_symstart;
 	nsym = (Elf_Sym *)start;
 	str = tab->sd_strstart;
 	for (g = i = n = 0; i < tab->sd_symsize/sizeof(Elf_Sym); i++) {
 		if (i == 0) {
 			nsym[n++] = sym[i];
 			continue;
 		}
 		/*
 		 * Remove useless symbols.
 		 * Should actually remove all typeless symbols.
 		 */
 		if (sym[i].st_name == 0)
 			continue; /* Skip nameless entries */
 		if (ELF_ST_TYPE(sym[i].st_info) == STT_FILE)
 			continue; /* Skip filenames */
 		if (ELF_ST_TYPE(sym[i].st_info) == STT_NOTYPE &&
 		    sym[i].st_value == 0 &&
 		    strcmp(str + sym[i].st_name, "*ABS*") == 0)
 			continue; /* XXX */
 		if (ELF_ST_TYPE(sym[i].st_info) == STT_NOTYPE &&
 		    strcmp(str + sym[i].st_name, "gcc2_compiled.") == 0)
 			continue; /* XXX */
 
 #ifndef DDB
 		/* Only need global symbols */
 		if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL)
 			continue;
 #endif
 
 		/* Save symbol. Set it as an absolute offset */
 		nsym[n] = sym[i];
 		nsym[n].st_shndx = SHN_ABS;
 		if (ELF_ST_BIND(nsym[n].st_info) == STB_GLOBAL)
 			g++;
 #if NKSYMS
 		j = strlen(nsym[n].st_name + tab->sd_strstart) + 1;
 		if (j > ksyms_maxlen)
 			ksyms_maxlen = j;
 #endif
 		n++;
 
 	}
 	tab->sd_symstart = nsym;
 	tab->sd_symsize = n * sizeof(Elf_Sym);
 
 #ifdef notyet
 	/*
 	 * Remove left-over strings.
 	 */
 	sym = tab->sd_symstart;
 	str = (caddr_t)tab->sd_symstart + tab->sd_symsize;
 	str[0] = 0;
 	n = 1;
 	for (i = 1; i < tab->sd_symsize/sizeof(Elf_Sym); i++) {
 		strcpy(str + n, tab->sd_strstart + sym[i].st_name);
 		sym[i].st_name = n;
 		n += strlen(str+n) + 1;
 	}
 	tab->sd_strstart = str;
 	tab->sd_strsize = n;
 
 #ifdef KSYMS_DEBUG
 	printf("str %p strsz %d send %p\n", str, n, send);
 #endif
 #endif
 
 	CIRCLEQ_INSERT_HEAD(&symtab_queue, tab, sd_queue);
 
 #ifdef notyet
 #ifdef USE_PTREE
 	/* Try to use the freed space, if possible */
 	if (send - str - n > g * sizeof(struct ptree))
 		ptree_gen(str + n, tab);
 #endif
 #endif
 }
 
 /*
  * Setup the kernel symbol table stuff.
  */
 void
 ksyms_init(int symsize, void *start, void *end)
 {
 	Elf_Ehdr *ehdr;
 
 #ifdef SYMTAB_SPACE
 	if (symsize <= 0 &&
 	    strncmp(db_symtab, SYMTAB_FILLER, sizeof(SYMTAB_FILLER))) {
 		symsize = db_symtabsize;
 		start = db_symtab;
 		end = db_symtab + db_symtabsize;
 	}
 #endif
 	if (symsize <= 0) {
 		printf("[ Kernel symbol table missing! ]\n");
 		return;
 	}
 
 	/* Sanity check */
 	if (ALIGNED_POINTER(start, long) == 0) {
 		printf("[ Kernel symbol table has bad start address %p ]\n",
 		    start);
 		return;
 	}
 
 	ehdr = (Elf_Ehdr *)start;
 
 	/* check if this is a valid ELF header */
 	/* No reason to verify arch type, the kernel is actually running! */
 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) ||
 	    ehdr->e_ident[EI_CLASS] != ELFCLASS ||
 	    ehdr->e_version > 1) {
 #ifdef notyet /* DDB */
 		if (ddb_init(symsize, start, end))
 			return; /* old-style symbol table */
 #endif
 		printf("[ Kernel symbol table invalid! ]\n");
 		return; /* nothing to do */
 	}
 
 #if NKSYMS
 	/* Loaded header will be scratched in addsymtab */
 	ksyms_hdr_init(start);
 #endif
 
 	addsymtab("netbsd", ehdr, &kernel_symtab);
 
 #if NKSYMS
 	ksyms_sizes_calc();
 #endif
 
 	ksymsinited = 1;
 
 #ifdef DEBUG
 	printf("Loaded initial symtab at %p, strtab at %p, # entries %ld\n",
 	    kernel_symtab.sd_symstart, kernel_symtab.sd_strstart,
 	    (long)kernel_symtab.sd_symsize/sizeof(Elf_Sym));
 #endif
 }
 
 /*
  * Get the value associated with a symbol.
  * "mod" is the module name, or null if any module. 
  * "sym" is the symbol name.
  * "val" is a pointer to the corresponding value, if call succeeded.
  * Returns 0 if success or ENOENT if no such entry.
  */
 int
 #ifdef KESSI
 ksyms_getval(const char *mod, char *sym, unsigned long *val, int type, int
 userreq)
 #else
 ksyms_getval(const char *mod, char *sym, unsigned long *val, int type)
 #endif
 {
 	struct symtab *st;
 	Elf_Sym *es;
 
 	if (ksymsinited == 0)
 		return ENOENT;
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_CALLS)
 		printf("ksyms_getval: mod %s sym %s valp %p\n", mod, sym,
 val);
 #endif
 
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (mod && strcmp(st->sd_name, mod))
 			continue;
 #ifdef KESSI
 		if ((es = findsym(sym, st, userreq)) == NULL)
 #else
 		if ((es = findsym(sym, st)) == NULL)
 #endif
 			continue;
 
 		/* Skip if bad binding */
 		if (type == KSYMS_EXTERN &&
 		    ELF_ST_BIND(es->st_info) != STB_GLOBAL)
 			continue;
 
 		if (val)
 			*val = es->st_value;
 		return 0;
 	}
 	return ENOENT;
 }
 
 /*
  * Get "mod" and "symbol" associated with an address.
  * Returns 0 if success or ENOENT if no such entry.
  */
 int
 ksyms_getname(const char **mod, char **sym, vaddr_t v, int f)
 {
 	struct symtab *st;
 	Elf_Sym *les, *es = NULL;
 	vaddr_t laddr = 0;
 	const char *lmod = NULL;
 	char *stable = NULL;
 	int type, i, sz;
 
 	if (ksymsinited == 0)
 		return ENOENT;
 
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		sz = st->sd_symsize/sizeof(Elf_Sym);
 		for (i = 0; i < sz; i++) {
 			les = st->sd_symstart + i;
 			type = ELF_ST_TYPE(les->st_info);
 
 			if ((f & KSYMS_PROC) && (type != STT_FUNC))
 				continue;
 
 			if (type == STT_NOTYPE)
 				continue;
 
 			if (((f & KSYMS_ANY) == 0) &&
 			    (type != STT_FUNC) && (type != STT_OBJECT))
 				continue;
 
 			if ((les->st_value <= v) && (les->st_value > laddr))
 {
 				laddr = les->st_value;
 				es = les;
 				lmod = st->sd_name;
 				stable = st->sd_strstart - st->sd_usroffset;
 			}
 		}
 	}
 	if (es == NULL)
 		return ENOENT;
 	if ((f & KSYMS_EXACT) && (v != es->st_value))
 		return ENOENT;
 	if (mod)
 		*mod = lmod;
 	if (sym)
 		*sym = stable + es->st_name;
 	return 0;
 }
 
 #if NKSYMS
 static int symsz, strsz;
 
 static void
 ksyms_sizes_calc(void)
 {               
         struct symtab *st; 
 	int i;
 
         symsz = strsz = 0;
         CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (st != &kernel_symtab) {
 			for (i = 0; i < st->sd_symsize/sizeof(Elf_Sym); i++)
 				st->sd_symstart[i].st_name =
 				    strsz + st->sd_symnmoff[i];
 			st->sd_usroffset = strsz;
 		}
                 symsz += st->sd_symsize;
                 strsz += st->sd_strsize;
         }
 }
 #endif
 
 /*
  * Temporary work structure for dynamic loaded symbol tables.
  * Will go away when in-kernel linker is in place.
  */
 
 struct syminfo {
 	size_t cursyms;
 	size_t curnamep;
 	size_t maxsyms;
 	size_t maxnamep;
 	Elf_Sym *syms;
 	int *symnmoff;
 	char *symnames;
 };
 	
 
 /*
  * Add a symbol to the temporary save area for symbols.
  * This routine will go away when the in-kernel linker is in place.
  */
 static void
 addsym(struct syminfo *info, const Elf_Sym *sym, const char *name,
        const char *mod)
 {
 	int len, mlen;
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_MORE_CALLS)
 		printf("addsym: name %s val %lx\n", name,
 (long)sym->st_value);
 #endif
 	len = strlen(name) + 1;
 	if (mod)
 		mlen = 1 + strlen(mod);
 	else
 		mlen = 0;
 	if (info->cursyms == info->maxsyms || 
 	    (len + mlen + info->curnamep) > info->maxnamep) {
 		printf("addsym: too many symbols, skipping '%s'\n", name);
 		return;
 	}
 	strlcpy(&info->symnames[info->curnamep], name,
 	    info->maxnamep - info->curnamep);
 	if (mlen) {
 		info->symnames[info->curnamep + len - 1] = '.';
 		strlcpy(&info->symnames[info->curnamep + len], mod,
 		    info->maxnamep - (info->curnamep + len));
 		len += mlen;
 	}
 	info->syms[info->cursyms] = *sym;
 	info->syms[info->cursyms].st_name = info->curnamep;
 	info->symnmoff[info->cursyms] = info->curnamep;
 	info->curnamep += len;
 #if NKSYMS
 	if (len > ksyms_maxlen)
 		ksyms_maxlen = len;
 #endif
 	info->cursyms++;
 }
 /*
  * Adds a symbol table.
  * "name" is the module name, "start" and "size" is where the symbol table
  * is located, and "type" is in which binary format the symbol table is.
  * New memory for keeping the symbol table is allocated in this function.
  * Returns 0 if success and EEXIST if the module name is in use.
  */
 static int
 specialsym(const char *symname)
 {
 	return	!strcmp(symname, "_bss_start") ||
 		!strcmp(symname, "__bss_start") ||
 		!strcmp(symname, "_bss_end__") ||
 		!strcmp(symname, "__bss_end__") ||
 		!strcmp(symname, "_edata") ||
 		!strcmp(symname, "_end") ||
 		!strcmp(symname, "__end") ||
 		!strcmp(symname, "__end__") ||
 		!strncmp(symname, "__start_link_set_", 17) ||
 		!strncmp(symname, "__stop_link_set_", 16);
 }
 
 int
 ksyms_addsymtab(const char *mod, void *symstart, vsize_t symsize,
     char *strstart, vsize_t strsize)
 {
 	Elf_Sym *sym = symstart;
 	struct symtab *st;
 	unsigned long rval;
 	int i;
 	char *name;
 	struct syminfo info;
 #ifndef KESSI
 	int	nsym;
 #endif
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_CALLS)
 		printf("ksyms_addsymtab: mod %s symsize %lx strsize %lx\n",
 		    mod, symsize, strsize);
 #endif
 
 #if NKSYMS
 	/*
 	 * Do not try to add a symbol table while someone is reading
 	 * from /dev/ksyms.
 	 */
 	while (ksyms_isopen != 0)
 		tsleep(&ksyms_isopen, PWAIT, "ksyms", 0);
 #endif
 
 	/* Check if this symtab already loaded */
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (strcmp(mod, st->sd_name) == 0)
 			return EEXIST;
 	}
 
 	/*
 	 * XXX - Only add a symbol if it do not exist already.
 	 * This is because of a flaw in the current LKM implementation,
 	 * these loops will be removed once the in-kernel linker is in
 place.
 	 */
 	memset(&info, 0, sizeof(info));
 	for (i = 0; i < symsize/sizeof(Elf_Sym); i++) {
 		char * const symname = strstart + sym[i].st_name;
 		if (sym[i].st_name == 0)
 			continue; /* Just ignore */
 
 		/* check validity of the symbol */
 		/* XXX - save local symbols if DDB */
 		if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL)
 			continue;
 			
 		/* Check if the symbol exists */
 #ifdef KESSI
 		if (ksyms_getval_from_kernel(NULL, symname,
 		    &rval, KSYMS_EXTERN) == 0) {
 #else
 		if (ksyms_getval(NULL, symname, &rval, KSYMS_EXTERN) == 0) {
 #endif
 			/* Check (and complain) about differing values */
 			if (sym[i].st_value != rval) {
 				if (specialsym(symname)) {
 					info.maxsyms++;
 					info.maxnamep += strlen(symname) + 1
 +
 					    strlen(mod) + 1;
 				} else {
 					printf("%s: symbol '%s' redeclared
 with"
 					    " different value (%lx !=
 %lx)\n",
 					    mod, symname,
 					    rval, (long)sym[i].st_value);
 				}
 			}
 		} else {
 			/*
 			 * Count this symbol
 			 */
 			info.maxsyms++;
 			info.maxnamep += strlen(symname) + 1;
 		}
 	}
 
 	/*
 	 * Now that we know the sizes, malloc the structures.
 	 */
 	info.syms = malloc(sizeof(Elf_Sym)*info.maxsyms, M_DEVBUF,
 M_WAITOK);
 	info.symnames = malloc(info.maxnamep, M_DEVBUF, M_WAITOK);
 	info.symnmoff = malloc(sizeof(int)*info.maxsyms, M_DEVBUF,
 M_WAITOK);
 
 	/*
 	 * Now that we have the symbols, actually fill in the structures.
 	 */
 	for (i = 0; i < symsize/sizeof(Elf_Sym); i++) {
 		char * const symname = strstart + sym[i].st_name;
 		if (sym[i].st_name == 0)
 			continue; /* Just ignore */
 
 		/* check validity of the symbol */
 		/* XXX - save local symbols if DDB */
 		if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL)
 			continue;
 			
 		/* Check if the symbol exists */
 #ifdef KESSI
 		if (ksyms_getval_from_kernel(NULL, symname,
 		    &rval, KSYMS_EXTERN) == 0) {
 #else
 		if (ksyms_getval(NULL, symname, &rval, KSYMS_EXTERN) == 0) {
 #endif
 			if ((sym[i].st_value != rval) &&
 specialsym(symname)) {
 				addsym(&info, &sym[i], symname, mod);
 			}
 		} else
 			/* Ok, save this symbol */
 			addsym(&info, &sym[i], symname, NULL);
 	}
 
 	st = malloc(sizeof(struct symtab), M_DEVBUF, M_WAITOK);
 	i = strlen(mod) + 1;
 	name = malloc(i, M_DEVBUF, M_WAITOK);
 	strlcpy(name, mod, i);
 	st->sd_name = name;
 	st->sd_symnmoff = info.symnmoff;
 	st->sd_symstart = info.syms;
 	st->sd_symsize = sizeof(Elf_Sym)*info.maxsyms;
 	st->sd_strstart = info.symnames;
 	st->sd_strsize = info.maxnamep;
 
 #ifndef KESSI
 	st->sd_usroffset = 0;
 
 	if ((nsym = info.maxsyms) > INT16_MAX) {
 		printf("Too many symbols for tree, skipping %d symbols\n",
 		    		nsym-INT16_MAX);
 		nsym = INT16_MAX;
 	}
 #if 0
 	printf("%s ptree2_alloc all symbols=%d\n", mod, nsym);
 #endif
 
 	st->sd_ptree2 = ptree2_alloc(st, nsym, ptree2_item);
 #endif
 	/* Make them absolute references */
 	sym = st->sd_symstart;
 
 #ifndef KESSI
 	for (i = 0; i < st->sd_symsize/sizeof(Elf_Sym); i++) {
 		if(i < nsym) {
 			char	*cp = st->sd_strstart + sym[i].st_name;
 
 			ptree2_add(st->sd_ptree2, cp, strlen(cp), i+1);
 		}
 		sym[i].st_shndx = SHN_ABS;
 	}
 #else
 	for (i = 0; i < st->sd_symsize/sizeof(Elf_Sym); i++)
 		sym[i].st_shndx = SHN_ABS;
 #endif
 
 	CIRCLEQ_INSERT_TAIL(&symtab_queue, st, sd_queue);
 #if NKSYMS
 	ksyms_sizes_calc();
 #endif
 	return 0;
 }
 
 /*
  * Remove a symbol table specified by name.
  * Returns 0 if success, EBUSY if device open and ENOENT if no such name.
  */
 int
 ksyms_delsymtab(const char *mod)
 {
 	struct symtab *st;
 	int found = 0;
 
 #if NKSYMS
 	/*
 	 * Do not try to delete a symbol table while someone is reading
 	 * from /dev/ksyms.
 	 */
 	while (ksyms_isopen != 0)
 		tsleep(&ksyms_isopen, PWAIT, "ksyms", 0);
 #endif
 
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (strcmp(mod, st->sd_name) == 0) {
 			found = 1;
 			break;
 		}
 	}
 	if (found == 0)
 		return ENOENT;
 	CIRCLEQ_REMOVE(&symtab_queue, st, sd_queue);
 	free(st->sd_symstart, M_DEVBUF);
 	free(st->sd_strstart, M_DEVBUF);
 	free(st->sd_symnmoff, M_DEVBUF);
 	/* LINTED - const castaway */
 	free((void *)st->sd_name, M_DEVBUF);
 
 #ifndef KESSI
 	ptree2_free(st->sd_ptree2);
 #endif
 
 	free(st, M_DEVBUF);
 #if NKSYMS
 	ksyms_sizes_calc();
 #endif
 	return 0;
 }
 
 int
 ksyms_rensymtab(const char *old, const char *new)
 {
 	struct symtab *st, *oldst = NULL;
 	char *newstr;
 
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (strcmp(old, st->sd_name) == 0)
 			oldst = st;
 		if (strcmp(new, st->sd_name) == 0)
 			return (EEXIST);
 	}
 	if (oldst == NULL)
 		return (ENOENT);
 
 	newstr = malloc(strlen(new)+1, M_DEVBUF, M_WAITOK);
 	if (!newstr)
 		return (ENOMEM);
 	strcpy(newstr, new);
 	free((char *)oldst->sd_name, M_DEVBUF);
 	oldst->sd_name = newstr;
 
 	return (0);
 }
 
 #ifdef DDB
 
 /*
  * Keep sifting stuff here, to avoid export of ksyms internals.
  */
 int
 ksyms_sift(char *mod, char *sym, int mode)
 {
 	struct symtab *st;
 	char *sb;
 	int i, sz;
 
 	if (ksymsinited == 0)
 		return ENOENT;
 
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (mod && strcmp(mod, st->sd_name))
 			continue;
 		sb = st->sd_strstart;
 
 		sz = st->sd_symsize/sizeof(Elf_Sym);
 		for (i = 0; i < sz; i++) {
 			Elf_Sym *les = st->sd_symstart + i;
 			char c;
 
 			if (strstr(sb + les->st_name - st->sd_usroffset,
 sym)
 			    == NULL)
 				continue;
 
 			if (mode == 'F') {
 				switch (ELF_ST_TYPE(les->st_info)) {
 				case STT_OBJECT:
 					c = '+';
 					break;
 				case STT_FUNC:
 					c = '*';
 					break;
 				case STT_SECTION:
 					c = '&';
 					break;
 				case STT_FILE:
 					c = '/';
 					break;
 				default:
 					c = ' ';
 					break;
 				}
 				db_printf("%s%c ", sb + les->st_name -
 				    st->sd_usroffset, c);
 			} else
 				db_printf("%s ", sb + les->st_name -
 				    st->sd_usroffset);
 		}
 	}
 	return ENOENT;
 }
 #endif
 
 #if NKSYMS
 
 /*
  * Static allocated ELF header.
  * Basic info is filled in at attach, sizes at open.
  */
 #define	SYMTAB		1
 #define	STRTAB		2
 #define	SHSTRTAB	3
 #define NSECHDR		4
 
 #define	NPRGHDR		2
 #define	SHSTRSIZ	28
 
 static struct ksyms_hdr {
 	Elf_Ehdr	kh_ehdr;
 	Elf_Phdr	kh_phdr[NPRGHDR];
 	Elf_Shdr	kh_shdr[NSECHDR];
 	char 		kh_strtab[SHSTRSIZ];
 } ksyms_hdr;
 
 
 void
 ksyms_hdr_init(caddr_t hdraddr)
 {
 
 	/* Copy the loaded elf exec header */
 	memcpy(&ksyms_hdr.kh_ehdr, hdraddr, sizeof(Elf_Ehdr));
 
 	/* Set correct program/section header sizes, offsets and numbers */
 	ksyms_hdr.kh_ehdr.e_phoff = offsetof(struct ksyms_hdr, kh_phdr[0]);
 	ksyms_hdr.kh_ehdr.e_phentsize = sizeof(Elf_Phdr);
 	ksyms_hdr.kh_ehdr.e_phnum = NPRGHDR;
 	ksyms_hdr.kh_ehdr.e_shoff = offsetof(struct ksyms_hdr, kh_shdr[0]);
 	ksyms_hdr.kh_ehdr.e_shentsize = sizeof(Elf_Shdr);
 	ksyms_hdr.kh_ehdr.e_shnum = NSECHDR;
 	ksyms_hdr.kh_ehdr.e_shstrndx = NSECHDR - 1; /* Last section */
 
 	/*
 	 * Keep program headers zeroed (unused).
 	 * The section headers are hand-crafted.
 	 * First section is section zero.
 	 */
 
 	/* Second section header; ".symtab" */
 	ksyms_hdr.kh_shdr[SYMTAB].sh_name = 1; /* Section 3 offset */
 	ksyms_hdr.kh_shdr[SYMTAB].sh_type = SHT_SYMTAB;
 	ksyms_hdr.kh_shdr[SYMTAB].sh_offset = sizeof(struct ksyms_hdr);
 /*	ksyms_hdr.kh_shdr[SYMTAB].sh_size = filled in at open */
 	ksyms_hdr.kh_shdr[SYMTAB].sh_link = 2; /* Corresponding strtab */
 	ksyms_hdr.kh_shdr[SYMTAB].sh_info = 0; /* XXX */
 	ksyms_hdr.kh_shdr[SYMTAB].sh_addralign = sizeof(long);
 	ksyms_hdr.kh_shdr[SYMTAB].sh_entsize = sizeof(Elf_Sym);
 
 	/* Third section header; ".strtab" */
 	ksyms_hdr.kh_shdr[STRTAB].sh_name = 9; /* Section 3 offset */
 	ksyms_hdr.kh_shdr[STRTAB].sh_type = SHT_STRTAB;
 /*	ksyms_hdr.kh_shdr[STRTAB].sh_offset = filled in at open */
 /*	ksyms_hdr.kh_shdr[STRTAB].sh_size = filled in at open */
 /*	ksyms_hdr.kh_shdr[STRTAB].sh_link = kept zero */
 	ksyms_hdr.kh_shdr[STRTAB].sh_info = 0;
 	ksyms_hdr.kh_shdr[STRTAB].sh_addralign = sizeof(char);
 	ksyms_hdr.kh_shdr[STRTAB].sh_entsize = 0;
 
 	/* Fourth section, ".shstrtab" */
 	ksyms_hdr.kh_shdr[SHSTRTAB].sh_name = 17; /* This section name
 offset */
 	ksyms_hdr.kh_shdr[SHSTRTAB].sh_type = SHT_STRTAB;
 	ksyms_hdr.kh_shdr[SHSTRTAB].sh_offset =
 	    offsetof(struct ksyms_hdr, kh_strtab);
 	ksyms_hdr.kh_shdr[SHSTRTAB].sh_size = SHSTRSIZ;
 	ksyms_hdr.kh_shdr[SHSTRTAB].sh_addralign = sizeof(char);
 
 	/* Set section names */
 	strlcpy(&ksyms_hdr.kh_strtab[1], ".symtab",
 	    sizeof(ksyms_hdr.kh_strtab) - 1);
 	strlcpy(&ksyms_hdr.kh_strtab[9], ".strtab",
 	    sizeof(ksyms_hdr.kh_strtab) - 9);
 	strlcpy(&ksyms_hdr.kh_strtab[17], ".shstrtab",
 	    sizeof(ksyms_hdr.kh_strtab) - 17);
 };
 
 int
 ksymsopen(dev_t dev, int oflags, int devtype, struct proc *p)
 {
 
 	if (minor(dev))
 		return ENXIO;
 	if (ksymsinited == 0)
 		return ENXIO;
 
 	ksyms_hdr.kh_shdr[SYMTAB].sh_size = symsz;
 	ksyms_hdr.kh_shdr[STRTAB].sh_offset = symsz +
 	    ksyms_hdr.kh_shdr[SYMTAB].sh_offset;
 	ksyms_hdr.kh_shdr[STRTAB].sh_size = strsz;
 	ksyms_isopen = 1;
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_DEVKSYMS)
 		printf("ksymsopen: symsz 0x%x strsz 0x%x\n", symsz, strsz);
 #endif
 
 	return 0;
 }
 
 int
 ksymsclose(dev_t dev, int oflags, int devtype, struct proc *p)
 {
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_DEVKSYMS)
 		printf("ksymsclose\n");
 #endif
 
 	ksyms_isopen = 0;
 	wakeup(&ksyms_isopen);
 	return 0;
 }
 
 #define	HDRSIZ	sizeof(struct ksyms_hdr)
 
 int
 ksymsread(dev_t dev, struct uio *uio, int ioflag)
 {
 	struct symtab *st;
 	size_t filepos, inpos, off;
 
 #ifdef KSYMS_DEBUG
 	if (ksyms_debug & FOLLOW_DEVKSYMS)
 		printf("ksymsread: offset 0x%llx resid 0x%lx\n",
 		    (long long)uio->uio_offset, uio->uio_resid);
 #endif
 
 	off = uio->uio_offset;
 	if (off >= (strsz + symsz + HDRSIZ))
 		return 0; /* End of symtab */
 	/*
 	 * First: Copy out the ELF header.
 	 */
 	if (off < HDRSIZ)
 		uiomove((char *)&ksyms_hdr + off, HDRSIZ - off, uio);
 
 	/*
 	 * Copy out the symbol table.
 	 */
 	filepos = HDRSIZ;
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (uio->uio_resid == 0)
 			return 0;
 		if (uio->uio_offset <= st->sd_symsize + filepos) {
 			inpos = uio->uio_offset - filepos;
 			uiomove((char *)st->sd_symstart + inpos,
 			   st->sd_symsize - inpos, uio);
 		}
 		filepos += st->sd_symsize;
 	}
 
 	if (filepos != HDRSIZ + symsz)
 		panic("ksymsread: unsunc");
 
 	/*
 	 * Copy out the string table
 	 */
 	CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 		if (uio->uio_resid == 0)
 			return 0;
 		if (uio->uio_offset <= st->sd_strsize + filepos) {
 			inpos = uio->uio_offset - filepos;
 			uiomove((char *)st->sd_strstart + inpos,
 			   st->sd_strsize - inpos, uio);
 		}
 		filepos += st->sd_strsize;
 	}
 	return 0;
 }
 
 int
 ksymswrite(dev_t dev, struct uio *uio, int ioflag)
 {
 	return EROFS;
 }
 
 int
 ksymsioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
 {
 	struct ksyms_gsymbol *kg = (struct ksyms_gsymbol *)data;
 	struct symtab *st;
 	Elf_Sym *sym = NULL;
 	unsigned long val;
 	int error = 0;
 	char *str = NULL;
 
 	if (cmd == KIOCGVALUE || cmd == KIOCGSYMBOL)
 		str = malloc(ksyms_maxlen, M_DEVBUF, M_WAITOK);
 
 	switch (cmd) {
 	case KIOCGVALUE:
 		/*
 		 * Use the in-kernel symbol lookup code for fast
 		 * retreival of a value.
 		 */
 		if ((error = copyinstr(kg->kg_name, str, ksyms_maxlen,
 NULL)))
 			break;
 #ifdef KESSI
 		if ((error = ksyms_getval_from_userland(NULL, str, &val,
 KSYMS_EXTERN)))
 #else
 		if ((error = ksyms_getval(NULL, str, &val, KSYMS_EXTERN)))
 #endif
 			break;
 		error = copyout(&val, kg->kg_value, sizeof(long));
 		break;
 
 	case KIOCGSYMBOL:
 		/*
 		 * Use the in-kernel symbol lookup code for fast
 		 * retreival of a symbol.
 		 */
 		if ((error = copyinstr(kg->kg_name, str, ksyms_maxlen,
 NULL)))
 			break;
 		CIRCLEQ_FOREACH(st, &symtab_queue, sd_queue) {
 #ifdef KESSI
 			if ((sym = findsym(str, st, 1)) == NULL) /* from
 userland */
 #else
 			if ((sym = findsym(str, st)) == NULL) /* from
 userland */
 #endif
 				continue;
 
 			/* Skip if bad binding */
 			if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
 				sym = NULL;
 				continue;
 			}
 			break;
 		}
 #ifndef KESSI
 		/*
 		 * XXX which value of sym->st_name should be returned? The
 real
 		 * one, or the one that matches what reading /dev/ksyms get
 ?
 		 *
 		 * Currently, we're returning the /dev/ksyms one.
 		 */
 #endif
 		 if (sym != NULL)
 			error = copyout(sym, kg->kg_sym, sizeof(Elf_Sym));
 		else
 			error = ENOENT;
 		break;
 
 	case KIOCGSIZE:
 		/*
 		 * Get total size of symbol table.
 		 */
 		*(int *)data = strsz + symsz + HDRSIZ;
 		break;
 
 	default:
 		error = ENOTTY;
 		break;
 	}
 
 	if (cmd == KIOCGVALUE || cmd == KIOCGSYMBOL)
 		free(str, M_DEVBUF);
 
 	return error;
 }
 #endif